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Abstract

Convolutional neural networks (CNNs), a particu-
lar type of deep neural networks, have been suc-
cessfully applied to solve longstanding real-world
problems in computer vision and natural language
understanding. Despite its outstanding capability,
its complicated inner workings make it difficult to
interact with CNNs in a user-driven manner; train-
ing a CNN model properly is time-consuming and
sensitive to initialization and parameter settings. To
tackle these issues, we present a real-time visual an-
alytics system for CNNs called ReVACNN, which
aims at enhancing the interpretation of CNNs and
allowing users to steer its training process in real
time in their own manner. In detail, ReVACNN vi-
sualizes the overall training process by (1) showing
the amount of forward-propagated activations and
back-propagated gradients of each filter/layer dur-
ing training iterations and by (2) presenting the 2D
embeddings of trained filter coefficients and activa-
tion maps to show the relationships among differ-
ent filters and data items. Additionally, ReVACNN
allows users to perform novel interactions in real
time: (1) skipping the gradient descent update on
particular layers of a CNN model to reduce the sub-
sequent training time and (2) selecting those mis-
classified data or those with low confidence scores
from the 2D embedding view and retraining the
model using them to further improve classifica-
tion performances. We present several use cases
demonstrating the benefits of such interactions in
ReVACNN.

1 Introduction
Deep learning recently made major breakthroughs in nu-
merous machine learning problems such as computer vi-
sion [Krizhevsky et al., 2012], speech recognition [Hinton
et al., 2012], and natural language processing [Collobert and
Weston, 2008; Bahdanau et al., 2014]. Beyond the tradi-
tional fully-connected model, the deep learning structure has
evolved in various forms, including convolutional neural net-
work (CNN) [LeCun et al., 1998; Krizhevsky et al., 2012],

a type of neural network suited for real-world image clas-
sification and other tasks, as well as recurrent neural net-
work [Elman, 1990] and long short-term memory (LSTM)
network [Hochreiter and Schmidhuber, 1997], another type
of neural network utilizing dependencies in sequential and
temporal data.

While significant achievements have been made, the un-
derstanding of underlying processes behind complicated deep
learning models received less examination, and the need
for tools and techniques for exploring and understanding
the inner workings of these various models ensued. This
made it difficult to properly train a deep learning model
by avoiding underfitting/overfitting, which has been a time-
consuming task that requires repetitive model selection and
hyper-parameter tuning. For example, in order to train the
model, a user has to constantly switch between different com-
binations of layers and filters, the step size, and so on, but
there have existed no intuitive or straightforward guidelines
on how to properly perform these processes.

In response, we present a real-time visual analytics sys-
tem for CNNs called ReVACNN, which allows users to un-
derstand the behavior of a CNN model and steer the training
process in real time in their own manner. In detail, ReVACNN
visualizes the overall training process by (1) showing the
amount of forward-propagated activations of data items and
back-propagated gradients of each filter during the iterative
training processes and by (2) presenting the 2D embeddings
of trained filter coefficients and the activation maps of data
items to show the relationships among different filters and
data items. ReVACNN further allows users to perform novel
interactions in real time: (1) skipping the gradient descent
update on the sub-part of a CNN model to reduce the subse-
quent training time and (2) selecting those misclassified data
or ambiguous data located near decision boundary from the
2D embedding view and retraining the model with them to
improve classification performances. We present several use
cases demonstrating the benefits of the proposed interactions
in ReVACNN.

The main contributions of this paper are summarized as
follows:

• Real-time visualization of how each filter/layer in a
CNN model is being trained, e.g., the stability of filters
and the relationships between them and



Figure 1: Overview of ReVACNN: (A) the network view (B) the training statistics view

• User-driven steering of a CNN model by interactively
skipping the gradient decent update of particular filters
and layers to reduce training time and retraining/fine-
tuning the model with user-selected data that are mis-
classified or with a low confidence score.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents detailed description
of our system and its visual components. Section 4 presents
usage scenarios. Finally, Section 5 concludes our discussion
with plans for future work.

2 Related Work
In this section, we discuss recent efforts towards interactive
visualization of deep neural networks for its deep understand-
ing and user interactivity.

Bruckner et al. [Bruckner et al., 2014] developed the sys-
tem called deepViz, an interactive visualization based on the
time slider interface that shows the layer-wise transitions of
heatmap representations of filters in each layer, the confusion
matrix, and the clustered images at different check-points for
understanding and diagnosing the network. Zeiler and Fer-
gus [Zeiler and Fergus, 2014] showed the practical applica-
tion of a visualization system for the diagnostic purpose by
utilizing a feature inversion technique called deconvolution
to refine the model. With the system that visualizes the acti-
vation maps of video streams in real time and features at each
layer, Yosinski et al. [Yosinski et al., 2015] proposed new
methods that reconstruct the trained filters in CNNs as inter-
pretable images. Rauber et al. [Rauber et al., 2017] explored
deep neural network by using dimensionality reduction tech-
niques to visualize filters and activation maps. It included

a variety of examples of two-dimensional embedding views
with various datasets such as MNIST, CIFAR-10 and SVHN.
This study also analyzed the effect of training processes by
showing the differences in terms of the relationships between
filters and activations.

On the interactive visualization side, a web-based imple-
mentation, such as ConvNetJS 1, made it possible to train a
CNN model in a browser environment using a Javascript li-
brary. Bolei et al. [Zhou et al., 2014] developed another web
interface where a user can select the activation of a single data
item at a particular layer and check the highly activated nodes
across different layers.2 Harley et al. [Harley, 2015] visual-
ized a CNN model in a three-dimensional space where the
network structure and the activation maps for each node are
simultaneously visualized. Google’s TensorFlow library pro-
vides a graphical user interface called TensorBoard,3 which
visualizes a neural network as a computational graph where
users can check the status of the trained model and change the
detailed configurations. More recently, Google also made a
web interface called TensorFlow Playground [Smilkov et al.,
2016]4 publicly available so that users can understand various
effects of different parameter settings by running with a rel-
atively simple neural network model on several toy data sets.
On the other hand, NVIDIA developed its own deep learning

1http://cs.stanford.edu/people/karpathy/
convnetjs/

2http://people.csail.mit.edu/torralba/
research/drawCNN/drawNet.html

3https://www.tensorflow.org/get_started/
graph_viz

4http://playground.tensorflow.org/



library and a web-based monitoring system called DIGITS.5
In visual analytics communities, those systems with ad-

vanced analytic as well as visualization components have
also been proposed. Liu et al. presented a system called
CNNVis [Liu et al., 2016], which applies bi-clustering and
edge bundling techniques to effectively visualize the learned
filters by aggregating the low-level features into high-level
ones. Through these approaches, CNNVis selectively visual-
ized representative filters and images from clustering results
to avoid the information overload and visual clutter. LST-
MVis [Strobelt et al., 2016] is another visual analytic sys-
tem that utilizes a parallel coordinates plot to visualize the
activation patterns of particular hidden nodes given input text
streams.

Even with various efforts mentioned above, a significant
amount of room is still available to improve the interactive vi-
sualization aspects of deep learning models. In particular, in
most of these systems, the real-time monitoring and interac-
tion capabilities during the training phase of real-world deep
learning models has not been fully addressed. In this sense,
our model can be viewed as one of the first systems where
users can check the status of the training process of CNNs
in real time and perform nontrivial interactions to steer the
model in a user-driven manner.

3 ReVACNN: Real-Time Visual Analytics for
Steering Convolutional Neural Network6

The main goal of ReVACNN is to provide real-time monitor-
ing and steering capabilities on a CNN model using the vi-
sual analytics approach in an easy-to-use manner. As shown
in Fig. 1, the main visualization modules of ReVACNN are
composed of (1) the network view and (2) the training statis-
tics view.

3.1 Network view
This module provides users with an overview of the activation
of filters in layers. As shown in Fig. 1(a), the view shows the
activation of each node as well as a bar chart showing the
total amount of (forward-propagated) activations or (back-
propagated) gradients of individual filters during the training
process.

It gives users the ability to monitor how the network is
being trained in real time. For example, by checking those
nodes with a large amount of activations, one can see which
part or pattern of a given image is mainly captured by the
model. On the other hand, the distribution of the gradient
amount across different nodes/layers indicates which of them
become relatively converged or stable compared to the others
and which are going through major changes.

In this visualization module, users can hover through nodes
to view the magnified 2D activation images. It helps users un-
derstand how the input image is transformed into a class score
as it goes through the deep neural layers. Furthermore, users

5https://developer.nvidia.com/digits
6The system is currently available at http://121.134.

151.241:5000/. Later, we will make our system publicly avail-
able with a proper domain name.

can selectively “freeze” particular layers so that they can be
skipped in the subsequent training processes. This capabil-
ity can drastically reduce the training time while having little
effect on and preserving the accuracy. Once these interac-
tions are performed, the view gets dynamically updated so
that users can visually identify the effect of their interactions.

3.2 Training statistics visualization

During training, the loss function serves as a clue for iden-
tifying whether the network is properly being trained. Thus,
our module, shown in Fig. 1(b) displays the training loss as a
line chart. Users can keep track of the temporal progress of
the loss function. In addition, other statistics, such as training
accuracy and validation accuracy, are updated for each in-
put image and shown to users for an in-depth analysis. Also,
training time for each epoch is displayed. This is especially
useful when we use the “freezing” function. We can directly
compare the training time before and after freezing layers.

3.3 2D embedding view

As discussed above, the filter coefficients and the activation
maps have frequently been the main subject of visualization
when analyzing CNNs. In our system, we explore them using
the 2D embedding view computed by t-distributed stochastic
neighbor embedding (t-SNE). As shown in Fig. 2, this view
shows the relationships of individual filters/activations of a
user-selected layer. Filters are presented using the vector rep-
resentation of their filter coefficients in the same layer. Acti-
vation maps are displayed using images of training/test data.
The user can change the parameter settings of t-SNE from
the upper and the left panels. The right panel shows the im-
age of a data item that the user hovers over with the mouse.
It also shows the class label and its predicted label. Using
the embedding view, users can explore various aspects of fil-
ters/data being trained. In this view, each filter/activation is
represented as an image or circle showing the details of the
chosen input image, along with the trailing lines indicating
the traces of its coordinates over the five t-SNE updates. We
can track each representation as it changes during the training
or the t-SNE iteration process.

By visualizing filters via this view, one can obtain an idea
about which filters are closely related, i.e., which filters cap-
ture redundant information and which part of the information
is not being captured. In general, the first layer filters di-
rectly look at the raw pixel data of an input image, and thus
their images are often the most interpretable among all the
layers. Normally, an analysis of the first layer weights can
help users recognize whether the network has been success-
fully trained. Users can assess the success of training based
on whether the trained filters have smooth transitions among
them so that they can capture as diverse patterns as possible.
The t-SNE visualization of activations shows clustered pat-
tern of activations as they pass through different layers. As
input data go through deeper layers, we get more clustered
and separate patterns than in previous layers. In this view,
we can analyze which data items are correctly classified and
which are not.



Figure 2: 2D embedding view of ReVACNN. Each node represents an input data item as its activation map at a user-selected
layer, color-coded with its label. The trailing line shows the traces of the five previous iterations so that a user can track the
training process in real time.
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Figure 3: System architecture of ReVACNN

Streamed t-SNE
Standard t-SNE has to restart with random initial coordinates
once new input data become available. Because of this, we
always obtain different results even though we have almost
identical data with slight changes. This makes it difficult to
keep track of changes in filters/activations in the embedding
view. To overcome this and show filters/activations during
training in a seamless manner, we developed the streamed
t-SNE. While maintaining the previous t-SNE view with a
minimal change, the streamed t-SNE internally updates the
pair-wise distance matrix using new data and continue the co-
ordinate updating step instead of restarting it from scratch.

3.4 System Architecture
Fig. 3 shows the architecture of ReVACNN. The system con-
sists mainly of the front-end web interface and the back-end
server. The server, which uses a Python web framework
called Flask,7 runs a deep learning library called TensorFlow,
and it transmits the model information to the web front-end
during the training process in real time. Our front-end web-
based system is implemented using HTML, CSS, and Mate-

7http://flask.pocoo.org/

rial design lite. We also utilized Keras-Hualos8 for connect-
ing the back-end server and the front-end web interface. The
server side computations are performed with Python in the
Jupyter Notebook environment.9 To enable real-time inter-
active visualization, we used web workers, a method to run a
JavaScript code in a thread programming environment. In this
manner, we maintain the high efficiency of the user interfaces
against the computationally intensive task of t-SNE.

4 Usage Scenarios
In this section, we present several use cases demonstrating the
advantage of ReVACNN in monitoring and steering a CNN
model during the training phase.

4.1 Experimental settings
CNN model. We start with a VGG-style neural network to
train and test our system, as shown in the ‘structure’ view in
Fig. 1. It has an input layer taking 32× 32× 3 input images,
followed by six convolutional layers which have 32, 32, 64,
64, 128 and 128 filters, respectively, with each filter size as
3 × 3, the stride size as 1, and the padding value as 1. Ad-
ditionally, each convolutional layer has a batch normalization
layer and a ReLU layer, and after its second, fourth, and sixth
layers, the max pooling layer follows. Afterwards, the two
fully-connected layers followed by a softmax layer with ten
classes are added at the end of our network.
Dataset. For our experiment, we used CIFAR-
10 [Krizhevsky and Hinton, 2009] dataset, which consists
of 60,000 32 × 32 color images in ten classes, with 6,000
images per class. The ten classes represent different objects
such as airplane, automobile, bird, cat, deer, dog, frog, horse,

8https://github.com/fchollet/hualos
9https://ipython.org/notebook.html



(a) Improperly trained case
(10% training accuracy)

(b) Properly trained case (80%
training accuracy)

Figure 4: Cluster patterns and the reconstructed images of the
first-layer filters.

Figure 5: Computing times per epoch for the original model
vs. the model with Conv1,2 layers skipped starting from
epoch 4 (a vertical dotted line) on CIFAR-10 dataset.

ship, and truck. We randomly split the entire data into 50,000
training and 10,000 test images.

4.2 Real-time monitoring
In general, neural network and deep learning models are sen-
sitive to initialization, hyper-parameters, and other settings.
Thus it is often difficult to properly train the model so that it
performs reasonably well even for the training data. Our 2D
embedding view can visualize each filter as a data item using
their trained coefficients as their feature vectors, which pro-
vides important insights about the characteristics of a prop-
erly trained model. As shown in Fig. 4, when the training ac-
curacy stays low even after training, the 2D embedding view
of filter coefficients shows a clustered pattern at the lower-left
part in Fig. 4(a), which means multiple filters capture the in-
formation in a redundant manner. It indicates that this model
is not properly trained so that it can extract diverse patterns
from data. On the other hand, where the accuracy reaches
high, the 2D embedding view of filter coefficients exhibits
somewhat evenly distributed filters with no clear cluster pat-
terns (Fig. 4(b)). This example reveals an important charac-
teristics of a well-trained model that the diversity of trained
filters is generally desirable in achieving a satisfactory classi-
fication accuracy.

Furthermore, the reconstructed images of the clustered fil-
ters shown in the lower-left part in Fig. 4(a) mostly show the
blue-colored patterns. This indicates that these filters con-
sider only a single color channel from an input image in-
stead of all the three color channels. On the contrary, when
the model shows a relatively good performance, the recon-

(a) Batch loss per epoch (b) Zoomed-in view after epoch 20

Figure 6: Training loss comparison between the original
model and the layer-freezed model

(a) Training accuracy (b) Validation accuracy

Figure 7: Training and Validation accuracy per epoch for the
original model and the Conv1,2 Skipped (Epoch at 4) model
on CIFAR-10 dataset. The vertical dotted line displays a par-
ticular epoch at which the layer was freezed.
structed images of filters is shown to involve all the different
colors in a balanced manner with no distinct color patterns.
Based on such diverse color patterns, our observation reveals
that those filters that combine all the channels of the previ-
ous activation maps can be generally desirable in achieving a
good generalization capability of the trained model.

4.3 Dynamic model steering
In this section, we present two use cases demonstrating the
advantage of our system to monitor and steer the deep learn-
ing model in real time.

Freezing layers
A main obstacle facing the use of deep learning is the time-
consuming nature of its training process. One novel interac-
tion supported by ReVACNN is called ‘layer freezing,’ which
skips the gradient descent update of particular layers and/or
nodes to reduce the subsequent training time. We observed
that this interaction performed in the middle of the training
process maintains the comparable training loss values to or
even better values than the original case without this interac-
tion involved.

In the example shown in Fig. 5, the model where Conv 1
and 2 layers are skipped for its gradient descent update af-
ter epoch 4 shows significant decrease in the training time,
e.g., at least 4 seconds per epoch, compared to the original
model. In this example, we decided to perform this inter-
action at epoch 4 since the t-SNE view of the filters in the
corresponding layers showed stable patterns by their short to
no trailing lines.

Additionally, the validation loss and the validation accu-
racy values by the model with our interaction were shown
to be sometimes slightly better than the original model, as



Figure 8: t-SNE view of activation maps across layers

(a) Misclassified data high-
lighted as red circles

(b) Interactive data selection

(c) Before retraining (d) After retraining

Figure 9: Model retraining using user-selected data

shown in Fig. 6. In other words, the model with our interac-
tion actually converged faster and achieved a higher training
accuracy than the original model. At last, as shown in Fig. 7,
one can see no noticeable differences in the training accuracy
and validation accuracy between the model with our interac-
tion and the original model.

Retraining the model with user-selected data
Our main model steering capability provided in the 2D em-
bedding view is for users to interactively select the misclassi-
fied or ambiguous data located near decision boundary and re-
train the model based on them. First, we browse t-SNE view
through across different layers, as shown in Fig. 8 and select
the FC-1 layer to initiate our interaction from. As shown in
Fig. 9(a), data points in the middle are shown as misclassi-
fied. Afterwards, we select the data around them via mouse
dragging interaction, as shown in Fig. 9(b).

At this point, the fully trained CNN model shows the train-
ing accuracy of 98% and the test accuracy of 80%. We now
retrain the model using these selected data with additional
randomly selected to match the batch size. After retraining

the data with 700 iterations we found all the selected misclas-
sified ones now correctly classified. As shown in Fig. 9(c),
before retraining, we can see two class cluster are close to
each other. But after retraining with the user-selected data
(Fig 9(d)) two clusters become clearly separated. Further-
more, their enhanced separations are also visualized as the
opposite direction of data trails after this interaction is per-
formed. Although not reported, we verified that the validation
accuracy still remained the same, not impacting the overall
model performance.

This scenario shows that one can interactively steer the
training process of a model to focus more on particularly con-
fusing classes and data items that users choose.

5 Conclusion and Future Work
In this paper, we proposed ReVACNN, a real-time visual an-
alytics system for convolutional neural networks. ReVACNN
supports the task of exploring and steering CNNs in real time
via various visualization modules including a 2D embedding
view by t-SNE as well as novel interaction capabilities to
speed up the training processes and train the model based on
user-selected data for performance improvement.

Our work opens up various challenges and opportunities
towards interactive, user-driven deep neural networks. One
such example would be interactive network structure build-
ing, which may involve dynamic addition/removal of nodes
and layers, and it poses several interesting research questions:
(1) how to initialize the newly added filters and nodes so
that they can capture complementary information of data to
the existing nodes/layers and (2) how to provide informative
measures as to which nodes/layers to remove while having a
minimal impact to the overall performance.

The visual patterns and associated interaction capabilities
presented in this paper, such as a redundant, clustered filter
patterns, may give some hints towards this research direc-
tions, and many more characteristics and treatments can be
discovered by other visual analytic approaches.
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