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Abstract Nonnegative matrix factorization (NMF) has been widely used in topic
modeling of a large-scale document corpus, where a set of underlying topics are
extracted by a low-rank factor matrix from NMF. However, the resulting topics
often convey only general, thus redundant information about the documents rather
than minor, but potentially meaningful information to users. To address this prob-
lem, we present a novel ensemble method of nonnegative matrix factorization that
discovers meaningful local topics. Our method leverages the idea of an ensemble
model, which has shown advantages in supervised learning, into an unsupervised
topic modeling context. That is, our model successively performs NMF given a
residual matrix obtained from previous stages and generates a sequence of topic
sets. Our algorithm for updating the input matrix has novelty in two aspects.
The first lies in utilizing the residual matrix inspired by a state-of-the-art gradient
boosting model, and the second stems from applying a sophisticated local weight-
ing scheme on the given matrix to enhance the locality of topics, which in turn
delivers high-quality, focused topics of interest to users. We extend this ensemble
model further with keyword- and document- based user interaction to introduce
user-driven topic discovery.

Keywords Topic modeling · ensemble learning · matrix factorization · gradient
boosting · local weighting

1 Introduction

Topic modeling has been an active area of research owing to its capability to
provide a set of topics in terms of their representative keywords, which serve as
a summary about large-scale document data [6]. Roughly speaking, two different
topic modeling approaches exist: 1) probabilistic models such as probabilistic latent
semantic indexing (pLSI) [20] and latent Dirichlet allocation (LDA) [6], and 2)
matrix factorization methods such as nonnegative matrix factorization (NMF) [33].

? This work is an extended version of [47]
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(a) Standard NMF

(b) L-EnsNMF

Fig. 1: Topic examples extracted from research papers in the data mining area
published in 2000 - 2008

In both types of methods, the main focus is to find a given number of bases
or probability distributions, which we call topics, over the dictionary so that they
can explain individual documents as much as possible. Because of this nature,
the identified topics tend to be general ones prevalent among the entire set of
documents. However, such dominant topics may not give us much meaningful
information, and sometimes they become highly redundant with each other. This
problem often arises in real-world document data when most of them share some
common characteristics in their contents or the documents contain a large amount
of noise, e.g., Twitter data.

For instance, Fig. 1 shows the sampled topics from those research papers in data
mining domains1 containing keywords ‘dimension’ or ‘reduction.’ Fig. 1(a), where
standard NMF returns ‘dimension’ or ‘reduction’ as dominant keywords in most
of the topics, renders the corresponding topics redundant, thus less informative.

To tackle this problem, we propose a novel topic modeling approach by building
an ensemble model of NMF, which can reveal not only dominant topics but also
minor but meaningful, important topics to users. Based on a gradient boosting
framework, which is one of the most effective ensemble approaches, our method
performs multiple stages of NMF on a residual matrix that represents the unex-
plained part of data from previous stages. Furthermore, we propose a novel local
weighting technique combined with our ensemble method to discover diverse lo-
calized topics. As a result, unlike the highly-redundant topics of standard NMF
(Fig. 1(a)), our proposed method shows much more meaningful, diverse topics,
thereby allowing users to obtain deep insight, as seen in Fig. 1(b).

Additionally, we propose an interactive topic modeling tool that mines topics
pertaining to the users’ interests from the entire document corpus. For example,
suppose an analyst is analyzing a large-scale dataset, such as Twitter dataset of
the New York City, and is interested in understanding a particular local event, such
as the New York City marathon. Although our prototypical model accomplishes

1 https://github.com/sanghosuh/four_area_data-matlab/
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a thorough analysis of the dataset by providing both main and local topics of the
dataset, it may not guarantee the topics that users are interested in. To supplement
this limitation, we further develop a variant model that extracts topics with human
intervention in the weighting process.

Overall, the main contributions of this paper are summarized as follows:

1. We develop an ensemble approach of nonnegative matrix factorization based
on a gradient-boosting framework. We show that this novel approach can extract
high-quality local topics from noisy documents dominated by a few general, thus
uninformative topics. In addition, we expand our work as a flexible, user-interactive
method by incorporating user inputs in our boosting framework of the ensemble
NMF.

2. We perform an extensive quantitative analysis using various document datasets
and demonstrate the superiority of our proposed method.

3. We show high-quality localized topic examples from several real-world datasets
including research paper collections and information-scarce Twitter data.

4. We present a topic model that extracts user-specified local topics from large-
scale datasets, such as Reuters news data and the information-scarce Twitter data.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 describes our ensemble NMF approach, which can reveal diverse local-
ized topics from text data. Section 4 shows quantitative comparison results and
qualitative topic examples using various real-world datasets. Finally, Section 5
concludes the paper with future work.

2 Related Work

Since NMF was originally proposed by Paatero and Tapper [44] as the name of pos-
itive matrix factorization, a myriad of research about NMF has been conducted.
Among them, Lee and Seung proposed the current popular form of NMF [33]. To
improve the performance and the convergence properties of NMF, many studies
presented an efficient alternating nonnegative least squares (ANLS)-based frame-
work [39,25] and its hierarchical version (HALS) [11]. In addition, Kim and Park
proposed the active-set-like fast algorithms [28]. On the other hand, NMF has
been applied in various manner, e.g., handling user inputs [10] and multiple data
sets [23]. Many variants of NMF, such as sparse NMF [24] and orthogonal NMF [13],
were also proposed using standard NMF [26].

Related to our approach, Biggs et al. [5] proposed a successive rank-one matrix
approximation based on the fact that the rank-one factorization of a nonnegative
matrix has the same solution as singular value decomposition. However, their
method requires to determine an optimal submatrix for such rank-one approxima-
tion, which is computationally expensive. More recently, Gillis and Glineur [16]
proposed another recursive approach called nonnegative matrix underapproxima-
tion based on the additional constraints that the approximated values should be
strictly smaller than the corresponding values in a given matrix, and due to this
constraint, the algorithm becomes more complicated and computationally inten-
sive compared to standard NMF. On the other hand, NMF has been used in the
ensemble framework in many other machine learning applications, including clus-
tering [18], classification [51], and bioinformatics [52].
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In general, most of these existing ensemble methods primarily focus on ag-
gregating the outputs from multiple individual models constructed independently
with some variations on either an input matrix or other parameter settings. Thus,
these are not applicable in topic modeling where we focus on the learned bases
themselves. Furthermore, none of them has tackled the idea of constructing an
ensemble of NMF models based on a gradient boosting framework, which grants
a clear novelty of our work.

Without nonnegativity constraint, an ensemble of general matrix factorization
has also been an active research topic in the context of collaborative filtering [46].
Ensembles of maximum margin matrix factorizations (MMMF) improved the re-
sult of a single MMMF model [12]. Ensembles of the Nystrom method [32] and
of the divide-and-conquer matrix factorization [40] have also been shown effec-
tive. The Netflix Prize runner-up [45] proposed a feature-weighted least squares
method using a linear ensemble of learners with human-crafted dynamic weights.
Lee et al. [37] proposed a stage-wise feature induction approach, automatically
inducing local features instead of human-crafted features. Local low-rank matrix
factorization (LLORMA) [35,36] combined the SVD-based matrix factorization
results from locally weighted matrices under the assumption that the given ma-
trix is only locally low-rank. It shares with our proposed method some common
aspects: learning and combining locally-weighted models based on random an-
chor point. However, the main difference is that we impose nonnegativity in each
individual model, which is more appropriate in some applications such as topic
modeling. More importantly, in each stage, we systematically focus on the unex-
plained part of the matrix with previous ensembles, in contrast to a random choice
with LLORMA.

In topic modeling, latent Dirichlet allocation (LDA) [7] is one of the most
widely used methods, and researchers improved it in various ways to extract more
meaningful and useful topics than LDA. Multi-grain topic modeling [48] extracts
user-oriented ratable topics from user reviews. Topic modeling has also been di-
rectly integrated with sentiment analysis in order to reveal sentiments for different
aspects of a product [22]. A visual analytics system TIARA [49] uses LDA-based
topic analysis techniques to discover newly evolving topics. NMF has also been a
popular technique in topic modeling applications. A new high-quality sentiment
analysis model has been developed using nonnegative matrix tri-factorization to
learn from lexical prior knowledge in sentiment classification [38].

Various interactive techniques and systems have been introduced to provide
user-specified meaningful and precise topics. The work by Andrzejewski et al. [2]
present interactive topic modeling to users by providing functions such as ‘merg-
ing,’ ‘isolating,’ or ‘splitting’ in the formation of topics. iVisClustering [34] allows
one to interactively refine topic clusters generated by LDA to filter noisy data.
Eddi [4] is an interactive topic browser based on clustering user’s explicitly or im-
plicitly mentioned Twitter feeds through topic analysis. ConVisIT [21] integrates
LDA-based topic modeling with interactive visualization techniques in exploring
long conversations from a social networking service or revising the topic model
if the topic does not meet the user’s needs. Bakharia et al. [3] assist qualitative
content analysis of analysts by incorporating interactiveness on topic modeling
algorithms.

In both LDA- and NMF-based topic modeling, most of the existing approaches
extract topics from a holistic view of a document corpus. Our method, on the other
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hand, extracts topics from a local point of view by considering only part of the en-
tire corpus. In detail, our approach can be viewed as a divide-and-conquer strategy
to extract local topics. Such a strategy also provides a suitable framework for user-
driven topic modeling by allowing users to flexibly choose where to focus on out of
the corpus. Capitalizing on this property, we propose an additional user-interactive
variant to allow a user-specified keyword- and document- based topic discovery by
leveraging the idea of our localized topic modeling scheme. UTOPIAN, an interac-
tive visual analytics system suggested by Choo et al. [9], also provides user inter-
action with document- and keyword- induced topics. However, our topic modeling
approach differs from UTOPIAN in that our model concentrates on encompassing
both major and localized topics.

3 Approach

In this section, we first review standard NMF and its applications to topic mod-
eling. Then, we formulate our method called L-EnsNMF, the gradient-boosted
ensemble NMF for local topic discovery. Afterwards, we introduce iL-EnsNMF,
user-driven topic discovery approach that adds keyword- and document- based
user interaction to L-EnsNMF. Table 1 summarizes the notations used through-
out this paper.

3.1 Preliminaries: NMF for Topic Modeling

Notation Description

m Number of keywords
n Number of documents
ks Number of topics per stage
q Number of stages in L-EnsNMF

k (= ksq) Number of total topics

ar Row vector selected from probability distribution P
(i)
r (x)

ac Column vector selected from probability distribution P
(i)
c (y)

A ∈ Rm×n
+ Input term-by-document matrix

P
(i)
r (x) Probability distribution over row indices x’s

P
(i)
c (y) Probability distribution over column indices y’s

Ŵ (i) ∈ Rm×k
+ Term-by-topic matrix obtained at stage i

Ĥ(i) ∈ Rk×n
+ Topic-by-document matrix at stage i

R(i) ∈ Rm×n
+ Residual matrix at stage i

R
(i)
L ∈ Rm×n

+ Localized residual matrix at stage i

D
(i)
r ∈ Rm×m

+ Row-wise scaling matrix at stage i

D
(i)
c ∈ Rn×n

+ Column-wise scaling matrix at stage i

Ur Set of user-selected keywords of interest
Uc Set of user-selected documents of interest

Table 1: Notations used in the paper
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Fig. 2: Overview of the proposed ensemble approach

Given a nonnegative matrix X ∈ Rm×n
+ , and an integer k � min (m, n), non-

negative matrix factorization (NMF) [33] finds a lower-rank approximation given
by

X ≈WH, (1)

where W ∈ Rm×k
+ and H ∈ Rk×n

+ are nonnegative factors. NMF is typically for-
mulated in terms of the Frobenius norm as

min
W,H≥0

‖X −WH‖2F . (2)

where ‘≥’ applies to every element of the given matrix in the left-hand side. In
the topic modeling context, xi ∈ Rm×1

+ , the i-th column of X, corresponds to the
bag-of-words representation of document i with respect to m keywords, possibly
with some pre-processing, e.g., inverse-document frequency weighting and column-
wise `2-norm normalization. k corresponds to the number of topics. wl ∈ Rm×1

+ ,
the l-th nonnegative column vector of W , represents the l-th topic as a weighted
combination of m keywords. A large value indicates a close relationship of the topic
to the corresponding keyword. The i-th column vector of H, hi ∈ Rk×1

+ , represents
document i as a weighted combination of k topics.

3.2 L-EnsNMF for Local Topic Modeling

3.2.1 Overview

We propose our gradient-boosted local ensemble NMF approach called L-EnsNMF.
As shown in Fig. 2, our model iteratively performs three steps, (a) residual update,
(b) anchor sampling, and (c) local weighting. To put it simply, residual update finds
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parts that are not fully explained by NMF. Based on this finding, anchor sampling
identifies particular keywords and documents that are relatively less explained.
Local weighting then boosts up these unexplained parts so that they are explained
in the next iterations. In the following sections, we explain our approach in more
detail.

3.2.2 Ensemble NMF Approach

In our ensemble model, an individual learner corresponds to NMF. Given a non-
negative matrix X ∈ Rm×n

+ , we learn an additive model X̂(q) with q products

W (i)H(i):

X ≈ X̂(q) =

q∑
i=1

W (i)H(i) (3)

where W (i) ∈ Rm×ks
+ , H(i) ∈ Rks×n

+ and q is the number of individual learners.
That is, the i-th stage represents a local NMF model discovering the i-th ks local
topics. To achieve this approximation, we introduce an objective function in terms
of the Frobenius norm as follows:

min
W (i),H(i)≥0, i=1,··· ,q

∥∥∥∥∥X −
q∑

i=1

W (i)H(i)

∥∥∥∥∥
2

F

. (4)

Our proposed method solves this problem in a forward stage-wise manner [19],
inspired by well-known ensemble learning methods in a supervised learning context
such as AdaBoost [14] and gradient boosting [15]. We iteratively add a new local
model to better approximate X, fitting the i-th local NMF, W (i)H(i), with rank ks
to the localized residual, which is the unexplained portion by previously learned
i− 1 local models. To this end, let us first define the (non-localized) nonnegative
residual matrix at stage i as

R(i) =

{
X if i = 1[

R(i−1) −W (i−1)H(i−1)
]
+

if i ≥ 2
(5)

where [·]+ is an operator that converts every negative element in the matrix to

zero. Next, we apply local weighting on this residual matrix R(i) to obtain its

localized version R
(i)
L and compute W (i) and H(i) by applying NMF to R

(i)
L as an

input matrix. More details about our local weighting scheme will be described in
Section 3.2.4.

In general, the input matrix to NMF at stage i is defined as

R(i) =

[[[
X −W (1)H(1)

]
+
−W (2)H(2)

]
+

· · ·

−W (i−1)H(i−1)
]
+
, (6)

where Ŵ (i) and Ĥ(i) are obtained in a forward stage-wise manner, e.g.,
(
Ŵ (1), Ĥ(1)

)
,(

Ŵ (2), Ĥ(2)
)

, and so on. By a simple manipulation, one can prove that our original
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objective function shown in Eq. (4) is equivalent to a single-stage NMF as

min
W (i),H(i)≥0, i=1,...,q

∥∥∥∥∥X −
q∑

i=1

W (i)H(i)

∥∥∥∥∥
2

F

(7)

= min
W (i),H(i)≥0, i=1,...,q

‖X −WH‖2F (8)

where W =
[
W (1) W (2) · · · W (q)

]
∈ Rm×(ksq)

+ and H =


H(1)

H(2)

...

H(q)

 ∈ R(ksq)×n
+ .

However, the main difference between our method and the (single-stage) stan-
dard NMF lies in the approach adopted to solve W (or W (i)’s) and H (or H(i)’s).
That is, in standard NMF, all of W (i)’s and H(i)’s are optimized simultaneously
within a single optimization framework using various algorithms such as a gradient
descent [39], a coordinate [33], or a block-coordinate descent framework [26]. How-
ever, our proposed method solves each set of (W (i), H(i))’s in a greedy, sequential
manner, which means that once the solution for (W (i), H(i)) is obtained at stage
i, it is fixed during the remaining iterations.

Our approach can be viewed as a functional gradient boosting approach [19].
In detail, let f (i) and L be

f (i) = f
(
W (1), · · · ,W (i), H(1), · · · , H(i)

)
=

i∑
l=1

W (l)H(l),

L
(
X, f (i)

)
=
∥∥∥X − f (i)∥∥∥2

F
=

∥∥∥∥∥X −
i∑

l=1

W (l)H(l)

∥∥∥∥∥
2

F

, (9)

respectively. In the case where f (i) = f (i−1), which corresponds to the results from
the previous stage i− 1, the gradient of Eq. (9), gi, can be expressed as

gi =

∂L
(
X, f (i)

)
∂f (i)


f (i)=f (i−1)

= 2
(
X − f (i−1)

)
= 2

(
X −

i−1∑
l=1

W (l)H(l)

)
.

Now, imposing the constraints f (i) ≥ 0 due to W (i), H(i) ≥ 0 and ignoring the
constant in the above equation, we can obtain the projected gradient P [gi] as
Eq. (6) by setting i = 1, · · · , q.

3.2.3 Why NMF on Residual Matrices

Traditionally, a greedy approach such as the one we proposed in Section 3.2.2 can
be viewed as a rank-deflation procedure for low-rank matrix factorization, which
obtains low-rank factors one at a time [50]. The power method [17], which consec-
utively reveals the most dominant eigenvalue and vector pairs, is a representative
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(b) Deflation-based NMF

Fig. 3: Synthetic data example where m = 2, ks = 1, and q = 2

deflation method. It is known that the solution obtained by such a (greedy) defla-
tion procedure is equivalent to the solution obtained by simultaneously optimizing
all the low-rank factors in singular value decomposition [17], where the low-rank
factor matrices are allowed to be both positive and negative.

Generally, such a deflation method does not work for NMF, due to the limita-
tion that the factor matrices should not contain negative elements. Fig. 3 shows the
comparison between standard NMF and our ensemble approach, given a synthetic
Gaussian mixture data in a two-dimensional feature space. As seen in Fig. 3(a),
the column vectors of W generated from standard NMF in Eq. (2) successfully re-
veal the two components of the Gaussian mixture data. However, in the deflation
approach shown in Fig. 3(b), the basis vector at the first stage, W (1) ∈ R2×1

+ , is

computed as a global centroid and then at the second stage, W (2) ∈ R2×1
+ , which

is computed on the residual matrix, is shown as the vector along a single axis,
y-axis in this case. As a result, the two bases found by the deflation-based NMF
approach fail to identify the true bases. This is clearly the case where the deflation
approach does not work with NMF.

In the case of text data, however, where the dimension is high and the matrix
is highly sparse, we claim that such a deflation method can work as well as or
even better than standard NMF. Fig. 4 shows another synthetic data example
where the data are relatively high-dimensional compared to those in the previ-
ous example, e.g., m = 5, and the column vectors of the true W are sparse. We
generated synthetic data using a Gaussian mixture with the mean values of its
components equal to the columns of W shown in Fig. 4(a). In this figure, standard
NMF (Fig. 4(b)) does not properly recover the true column vectors of W except
for the third component. On the other hand, our deflation-based NMF approach
(Fig. 4(c)) recovers most of the true column vectors of W much better than the
standard NMF.

The reason why the deflation-based NMF works surprisingly well with sparse
high-dimensional data, e.g., text data, is because their original dimensions, e.g.,
keywords in text data, with large values are unlikely to overlap among different
column vectors of W due to its sparsity. In this case, the deflation-based NMF can
be suitable by finding these dimensions or keywords with large values in one vector
at a time. Combined with our local weighting technique described in Section 3.2.4,
such a deflation-based method helps to reveal highly non-redundant, diverse topics
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Fig. 4: Column vectors of W from synthetic data with m = 5, ks = 1, and q = 4.
The columns of W ’s generated by both the standard and the ensemble NMF have
been aligned to those of the ground truth W using the Hungarian method [31].

from the data by preventing the significant keyword shown in a particular topic
from appearing in the other topics.

3.2.4 Local Weighting

In contrast to standard NMF, which discovers mostly general but less informative
topics, our ensemble approach tends to identify major but general topics at an
early stage and gradually reveal interesting local topics in subsequent stages, since
minor, unexplained topics will become more prominent in the residual matrix as
stages proceed. However, when the number of topics per stage ks is small, we
found that this process sometimes takes many stages before revealing interesting
topics. To further accelerate this process and enhance the diversity of local topics,
we perform local weighting on the residual matrix R(i) so that the explained parts
are suppressed while the unexplained parts are highlighted.

We form the localized residual matrix R
(i)
L as

R
(i)
L = D

(i)
r R(i)D

(i)
c , (10)

where diagonal matrices D
(i)
r ∈ Rm×m

+ and D
(i)
c ∈ Rn×n

+ perform row- and column-
wise scaling, respectively. Solving NMF given this scaled residual matrix is equiv-
alent to solving a weighted version of NMF with the corresponding row- and
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column-wise scaling since

min
W (i),H(i)≥0

∥∥∥D(i)
r

(
R(i) −W (i)H(i)

)
D

(i)
c

∥∥∥2
F

= min
W (i),H(i)≥0

∥∥∥D(i)
r R(i)D

(i)
c −D

(i)
r W (i)H(i)D

(i)
c

∥∥∥2
F

= min
W

(i)
L ,H

(i)
L ≥0

∥∥∥R(i)
L −W

(i)
L H

(i)
L

∥∥∥2
F

by setting W
(i)
L = D

(i)
r W (i) and H

(i)
L = H(i)D

(i)
c .

We design these scaling factors to assign higher weights to those rows or
columns less explained (large residuals) by previous stages. Let us define the prob-

ability distributions P
(i)
r and P

(i)
c over row indices, x’s, and over column indices,

y’s, respectively, as

P
(i)
r (x) =

∑n
s=1R

(i) (x, s)∑m
l=1

∑n
s=1R

(i) (l, s)
for x = 1, · · · ,m (11)

P
(i)
c (y) =

∑m
l=1R

(i) (l, y)∑m
l=1

∑n
s=1R

(i) (l, s)
for y = 1, · · · , n. (12)

In Eqs. (11) and (12), higher probability values are assigned to those rows or
columns with larger values in residual matrix R(i). In other words, a higher prob-
ability indicates that the corresponding row or column is less explained up to the
previous stage. Rather than directly using these probability distributions as the

local weighting matrices D
(i)
r or D

(i)
c , we sample from this probability distribution

only a single row ar and a column ac, which we call an anchor point, correspond-
ing to a particular keyword and a document that were not yet well explained
from previous stages, respectively. The purpose of this selection process is to allow
the NMF computation with only a small ks to properly reveal the topics around
the selected document and keyword, rather than to generate still unclear topics
reflecting most of the unexplained documents.

The diagonal entries of D
(i)
r and D

(i)
c are then computed based on the similarity

of each row and column to the anchor row ar and column ac, respectively. Specifi-
cally, given the selected ar and ac, we use the cosine similarity to compute the l-th

diagonal entry of D
(i)
r (l, l) and the s-th diagonal entry of D

(i)
c (s, s), respectively,

as

D
(i)
r (l, l) = cos (X (ar, :) , X (l, :)) for l = 1, · · · ,m (13)

D
(i)
c (s, s) = cos (X (:, ac) , X (:, s)) for s = 1, · · · , n. (14)

Using these weights, we enhance the locality of the resulting topics.

Applying the localized residual matrix as described above, we plug R
(i)
L (Eq. (10))

into Eq. (16) and obtain W (i) and H(i). When computing the residual matrix in
the next stage using W (i) and H(i), as shown in Eq. (5), however, it may end up
removing only the fraction of the residuals, which can be significantly smaller than
the unweighted residuals since all the weights are less than or equal to 1. To adjust
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this shrinking effect caused by local weighting, we recompute H(i) using the given
W (i) and the non-weighted residual matrix R(i), i.e.,

H(i) = arg min
H≥0

∥∥∥W (i)H −R(i)
∥∥∥2
F
. (15)

In this manner, our approach still maintains the localized topics W (i) from R
(i)
L

while properly subtracting the full portions explained by these topics from R(i)

for the next stage.
Finally, the detailed algorithm of our approach is summarized in Algorithm 1.

Algorithm 1: Localized Ensemble NMF (L-EnsNMF)

Input: Input matrix X ∈ Rm×n
+ , integers ks and q

Output: W (i) ∈ Rm×ks
+ and H(i) ∈ Rks×n

+ for i = 1, · · · , q
for i = 1 to q do

Compute R(i) using Eq. (6).

Compute P
(i)
r (x) and P

(i)
c (y) using Eqs. (11) and (12).

ar ← Sample a row from P
(i)
r (x).

ac ← Sample a column from P
(i)
c (y).

Compute D
(i)
r and D

(i)
c using Eqs. (13) and (14).

Compute R
(i)
L using Eq. (10).

Compute W (i) using Eq. (16).

Compute H(i) using Eq. (15).
end

3.2.5 Efficient Algorithm for Ensemble NMF

A unique advantage of our method is that regardless of the total number of top-
ics, k, one can keep the rank used in computing NMF at each stage, ks, small
while increasing the number of stages, q, i.e., ks � (k = ksq). Hence, to efficiently
solve NMF with a low value of ks, we extend a recent active-set-based NMF al-
gorithm [30], which demonstrated significantly high efficiency for a small value of
ks.

In detail, our algorithm is built upon the two-block coordinate descent frame-
work, which iteratively solves W while fixing H and then the other way around.

Given a local residual matrix R
(i)
L at stage i, we first obtain the term-by-topic

matrix Ŵ (i) and the topic-by-document matrix Ĥ(i) by solving(
W (i), H(i)

)
= arg min

W,H≥0

∥∥∥R(i)
L −WH

∥∥∥2
F
. (16)

Each sub-problem of solving W (i) and H(i) in the above equation can be repre-
sented as

min
G≥0
‖Y −BG‖2F =

∑
i

min
gi≥0

‖yi −Bgi‖
2
2 (17)

where H is obtained by setting B = W , G = H, and Y = X, W is obtained by
setting B = H, G = W , and Y = XT , and gi and yi are the i-th columns of G
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and Y , respectively. Let us consider each problem in the summation operator and
rewrite it as

min
g≥0
‖y−Bg‖22 , (18)

which is a nonnegativity-constrained least squares problem. Here, the elements
of the vector g can be partitioned into the one containing zeros and the other
containing strictly positive values, and let us call these sets of dimension indices of
the active and the passive sets as Ia and Ip, respectively. Once we fully know Ia
and Ip for the optimal solution of Eq. (18), such an optimal solution is equivalent
to the solution obtained by solving an unconstrained least squares using only the
passive set of variables [27], i.e.,

min ‖B (:, Ip)gi (Ip)− y‖22 . (19)

The active-set method iteratively modifies the partitioning between Ia and Ip and
solves for Eq. (19) until the optimal Ia and Ip are found. However, this process
is performed one at a time for a particular partitioning until convergence, which
requires a large number of iterations. The approach proposed in [30] accelerates
this process for small ks values by exhaustively solving based on all the possible
partitionings and selecting the optimal one since the number of all the different
partitionings, which is 2ks , would remain small.

However, this approach is not applicable when ks is large since the number
of partitionings grows exponentially with respect to ks, and thus the original ap-
proach [30] proposed to build a hierarchical tree until the method obtains the
number of leaf nodes as the total number of clusters or topics. However, in this
paper, we adopt this exhaustive search approach for an optimal active/passive set
partitioning as our individual learner at each stage, which maintains the small
value of ks when solving NMF at each stage. As will be shown in Section 4, our
method does not only generate high-quality local topics but also provides high
computational efficiency compared to standard NMF for obtaining the same num-
ber of topics.

3.3 iL-EnsNMF: User-Driven Topic Discovery

3.3.1 Overview

Our L-EnsNMF extracts topics by focusing on parts of the matrix that are not
fully explained. While maintaining this property, we modify the above-described
local weighting scheme and formulate a user-interactive variant of L-EnsNMF
called iL-EnsNMF. It takes keywords as an input from the user and reveals local
topics relevant to such user-selected keywords. As shown in Fig. 5, it consists of
three steps, (a) residual update, (b) anchor selection, and (c) user-driven local
weighting. First, the residual update finds parts that are not fully explained by
NMF. Then, the weighting is decided by the user-specified set of keywords and/or
set of documents. Finally, the user-driven local weighting then boosts up these
user-specified parts so that they are revealed in the next iterations. In the following
section, we describe iL-EnsNMF in detail.
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Fig. 5: Overview of iL-EnsNMF

3.3.2 Algorithm

The main difference of iL-EnsNMF from L-EnsNMF lies in a novel scheme of user-
driven selection of anchor rows or columns rather than their random sampling from
Eqs. (11) and (12). That is, given the residual matrix R(i) at stage i, we apply user-
driven local weighting on this residual matrix R(i) to obtain its locally weighted

matrix R
(i)
r or R

(i)
c , which are either row- or column-wise weighted, respectively,

as

R
(i)
r = DrR

(i) and (20)

R
(i)
c = R(i)Dc. (21)

Now, we explain how to form Dr or Dc based on a user input, which is composed
of particular keywords or documents that a user is interested in, as illustrated in
Fig. 5. In the case a user selects keywords of interest, whose index set is represented
as Ur, the l-th diagonal element of Dr is computed as the average cosine similarity
of the l-th row of A and those rows of A indexed by Ur, i.e.,

Dr (l, l) =
1

|Ur|
∑
r̃∈Ur

cos (A (r̃, :) , A (l, :)) for l = 1, · · · ,m. (22)

Similarly, if the user selects documents of interest, whose index set is represented
as Uc, the s-th diagonal element of Dc is computed as the average cosine similarity
of the s-th column of A and those columns of A indexed by Uc, i.e.,

Dc (s, s) =
1

|Uc|
∑
c̃∈Uc

cos (A (:, c̃) , A (:, s)) for l = 1, · · · , n. (23)
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Once we form the locally weighted residual matrix via the above-described
weighting scheme, we iteratively perform the same process of the original L-
ensNMF while fixing Ur (or Uc) until the following condition is met:∥∥∥∥[R(i+d) (Ur, :)−W (i+d) (Ur, :)H(i+d)

]
+

∥∥∥∥2
F∥∥R(i) (Ur, :)

∥∥2
F

> θ or (24)

∥∥∥∥[R(i+d) (:,Uc)−W (i+d)H(i+d) (:,Uc)
]
+

∥∥∥∥2
F∥∥R(i) (:,Uc)

∥∥
F

> θ (25)

where the left-hand side represents a relative residual at stage (i+ d) with respect
to the residual at stage i, which is the starting stage at which we chose the key-
words or documents, and θ is a pre-defined parameter value. The relative residual
measures how much the residual amount remains in the submatrix of R(i) cor-
responding to the user-specified keywords or documents, with respect to stage i.
The less the relative residual is, the more the relevant topics would be obtained.
In other words, this criterion enables the algorithm to exhaustively extract topics
relevant to user-specified keywords or documents until the amount of unexplained
contents about them becomes less than a particular threshold θ.

Finally, the algorithm of iL-EnsNMF is summarized in Algorithms 2 and 3.

Algorithm 2: keyword-wise iL-EnsNMF

Input: Input matrix X ∈ Rm×n
+ , r̃ ∈ Ur, integers ks and θ

Output: W (̃i) ∈ Rm×ks
+ and H (̃i) ∈ Rks×n

+ for ĩ = i, · · ·
for i = 1 to m do

Compute Dr (i, i) using Eq. (22).
end
while satisfying Eq. (24) do

Compute R(i) using Eq. (5).
Compute Rr using Eq. (20).

Compute W (i) using Eq. (16).

Compute H(i) using Eq. (15).
i = i+1

end

4 Experiments

In this section, we present extensive quantitative comparisons of our proposed ap-
proach against other state-of-the-art methods. Afterwards, we demonstrate qual-
itative results containing high-quality localized topics identified by our methods,
which would be otherwise difficult to discover using other existing methods, from
several real-world datasets.

All the experiments were conducted using MATLAB 8.5 (R2015a) on a desktop
computer with dual Intel Xeon E5-2687W processors.
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Algorithm 3: document-wise iL-EnsNMF

Input: Input matrix X ∈ Rm×n
+ , c̃ ∈ Uc, integers ks and θ

Output: W (̃i) ∈ Rm×ks
+ and H (̃i) ∈ Rks×n

+ for ĩ = i, · · ·
for j = 1 to n do

Compute Dc (j, j) using Eq. (23).
end
while satisfying Eq. (25) do

Compute R(i) using Eq. (5).
Compute Rc using Eq. (21).

Compute W (i) using Eq. (16).

Compute H(i) using Eq. (15).
i = i+1

end

4.1 Experimental Setup

In the following, we describe our experimental setup including datasets, baseline
methods, and evaluation measures.

4.1.1 Datasets

We selected the following five real-world document datasets: 1) Reuters-21578
(Reuters),2 a collection of articles from the Reuters newswire in 1987; 2) 20
Newsgroups (20News),3 from Usenet newsgroups; 3) Enron4 containing 2,000
randomly sampled emails generated by the employees of Enron Corporation; 4)
IEEE-Vis (VisPub),5 academic papers published in IEEE Visualization confer-
ences (SciVis, InfoVis, and VAST) from 1990 to 2014; and 5) Twitter, a collection
of 2,000 randomly selected tweets generated from a specific location of New York
City in June 2013. These datasets are summarized in Table 2.

Reuters 20News Enron VisPub Twitter

#docs 7,984 18,221 2,000 2,592 2,000
#words 12,411 36,568 19,589 7,535 4,212

Table 2: Summary of the datasets used

2 https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
3 http://qwone.com/~jason/20Newsgroups/
4 https://www.cs.cmu.edu/~./enron/
5 http://www.vispubdata.org/site/vispubdata/
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4.1.2 Baseline Methods

We compared our method, L-EnsNMF, against various state-of-the-art methods,
including standard NMF (StdNMF) [26],6 sparse NMF (SprsNMF) [24],7 or-
thogonal NMF (OrthNMF) [13],8 and latent Dirichlet allocation (LDA) [6].9

In most of these methods, we used default parameter values provided by the
software library, including the regularization parameters for SprsNMF, OrthNMF,
and LDA, as well as the parameters used in convergence criteria. Since there exist
no clear convergence criteria for the Gibbs sampling-based implementation of LDA,
we set the number of iterations as 2,000, which is one of the most common settings.
Also, note that we did not use LLORMA as one of the baseline methods because
it is a supervised method and does not impose a nonnegativity constraint, the two
characteristics of which make it unfit for topic modeling.

4.1.3 Evaluation Measures

We adopted several evaluation measures for assessing the quality of the generated
topics: topic coherence [1] and the total document coverage. Additionally, we com-
pared the computing times between different methods. In the following, we will
describe each measure in detail.

Topic Coherence. To assess the quality of individual topics, we utilize the
point-wise mutual information (PMI) [43], which indicates how likely a pair of
keywords co-occur in the same document. That is, given two words wi and wj ,
PMI is defined as

PMI (wi, wj) = log
p (wi, wj)

p (wi) p (wj)
, (26)

where p (wi, wj) represents the probability of wi and wj co-occurring in the same
document and p (wi) represents the probability of wi occurring in our document
dataset. Thus, a pair of words with a high PMI score can be viewed as being
semantically related, thus conveying meaningful information. To extend this notion
at a topic level and compute the topic coherence measure, we first select the ten
most representative keywords of each topic and then compute the average PMI
score among them. Next, we further compute the average of this score over all the
given topics.

Total Document Coverage. This measure computes how many documents
(out of the entire document set) can be explained by a given set of topics. Here, a
document is said to be explained if there exists a topic such that at least a certain
number of keywords among its most representative keywords are found in that
document. That is, given a set of topics T ∈ {t1, · · · , tk} and a set of documents
D = {d1, · · · , dn}, the total document coverage is defined as

TDC (T , D) =
|d ∈ D : ∃ti ∈ T s.t. |w (d) ∩ wR (ti, c1)| ≥ c2|

|D| , (27)

6 https://github.com/kimjingu/nonnegfac-matlab
7 http://www.cc.gatech.edu/~hpark/software/nmf_bpas.zip
8 http://davian.korea.ac.kr/myfiles/list/Codes/orthonmf.zip
9 http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
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Fig. 6: Sensitivity analysis of topic coherence and total document coverage across
various stages when 100 topics (ks = 2, q = 50) are computed using VisPub
dataset. Each value represents the average topic coherence and average total doc-
ument coverage of ks corresponding topics per stage. The results were obtained
by computing the average values over 20 runs. The values in parentheses indi-
cate average standard deviation of each algorithm. They represent the average of
standard deviation of the corresponding values per stage.

where w (d) represents the set of words occurring in document d and wR (ti, c1)
represents the set of the c1 most representative keywords of topic ti. In other
words, this measures the relative number of documents containing at least c2
keywords among the c1 most representative keywords of one topic or more. In our
experiment, we set c1 = 20 and observed how this measure changes while varying
c2.
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In terms of the comparison between two topic sets with an equal number of
topics, if one set has a better value of this measure than the other, then one can
view it as having not only the better quality of topics but also the better diversity
since it explains more number of documents using the same number of topics.

4.2 Quantitative Analysis

In the following, we discuss sensitivity analysis as well as quantitative comparisons
of our proposed approach against other baseline methods.

4.2.1 Sensitivity Analysis

We conducted one-at-a-time sensitivity analysis using the number of stages as the
varying input, as illustrated in Fig. 6. The results show that L-EnsNMF performs
better than other state-of-the-art algorithms in topic coherence and total document
coverage across various number of stages. Our approach, however, does not achieve
the best performance in early stages–that is, prior to q = 12 and q = 15 for topic
coherence and total document coverage, respectively–but improves as the stages
proceed. In the case of topic coherence, as shown in Fig. 6(a), the number of stages
needs to be at least q = 12 before our approach starts to perform better than
other methods. Also, it is worth noting that the topic coherence values continue
to increase as the number of stages grow. For total document coverage, as shown
in Fig. 6(a), our approach starts to generate topics with the best total document
coverage after q = 15. On the contrary to topic coherence, the total document
coverage does not demonstrate increasing trend but rather consistent performance.
Based on this analysis, we chose the sets of parameters, i.e., the number of stages,
for the topic coherence and total document coverage experiments, which are shown
at Table 3 and Table 4. Since sensitivity analysis showed no single optimal setting
that works for both the topic coherence and total document coverage as well as
different trends, we chose different sets of parameters for the two experiments.
Among the three parameters (q = 6, 12, 24 and q = 5, 25, 50 for topic coherence
and total document coverage, respectively), the first parameter was selected at a
stage where our approach does not perform the best; the second one was chosen
to show where our approach starts to generate the best topic coherence and total
document coverage; the last one was chosen based on where it performs the best
and is double the number of stages from the previous parameter.

4.2.2 Evaluation Measures

Topic Coherence. Table 3 compares the quality of the topics generated by dif-
ferent topic modeling methods using the topic coherence measure. As seen in this
table, our localized ensemble NMF is shown to maintain the highest topic coher-
ence consistently in most of the cases. For Reuters dataset, with k = 12, LDA
performs the best while our method trails behind closely with the second best
coherence scores. Except for this case, however, our method demonstrates the
highest performance consistently in all the datasets and the different number of
topics. Note also that there is no clear second best performing method. This ob-
servation lends further support for our localized ensemble NMF by indicating that
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Table 3: Comparison of topic coherence values. The reported results are averaged
values over 20 runs. The best performance values are shown in bold, and the second
best ones are underlined. The standard deviation values are shown in parentheses.
They represent the average of standard deviation of the corresponding values per
stage.

k = 12 (ks = 2, q = 6)
Std Sprs Orth

LDA
L-Ens

NMF NMF NMF NMF

Reuters 1.051 (0.343) 1.121 (0.458) 0.631 (0.771) 1.348 (0.625) 1.315 (1.144)
20News 1.435 (0.774) 1.537 (0.840) 0.920 (0.318) 1.685 (0.675) 2.108 (1.352)
Enron 1.918 (0.834) 1.980 (0.749) 1.885 (0.836) 1.778 (0.558) 2.490 (1.516)
VisPub 0.403 (0.297) 0.694 (0.452) 0.389 (0.295) 0.302 (0.255) 1.071 (1.513)
Twitter 1.426 (0.351) 1.649 (0.706) 1.431 (0.346) 0.487 (0.179) 2.761 (1.614)

k = 24 (ks = 2, q = 12)
Std Sprs Orth

LDA
L-Ens

NMF NMF NMF NMF
Reuters 1.213 (0.485) 1.408 (0.679) 0.874 (0.943) 1.399 (0.580) 1.640 (1.345)
20News 1.512 (0.723) 1.795 (0.819) 1.000 (0.342) 2.043 (0.939) 2.334 (1.403)
Enron 1.890 (0.792) 1.792 (0.966) 1.886 (0.790) 1.928 (0.596) 2.370 (1.387)
VisPub 0.517 (0.343) 1.040 (0.661) 0.519 (0.342) 0.516 (0.225) 1.406 (1.644)
Twitter 1.654 (0.656) 1.764 (0.852) 1.671 (0.702) 0.442 (0.367) 2.843 (1.715)

k = 48 (ks = 2, q = 24)
Std Sprs Orth

LDA
L-Ens

NMF NMF NMF NMF
Reuters 1.349 (1.349) 1.322 (1.322) 1.103 (1.103) 1.590 (1.590) 1.832 (1.832)
20News 1.637 (0.692) 1.864 (0.730) 1.086 (0.378) 2.180 (0.869) 2.375 (1.486)
Enron 1.839 (0.790) 1.881 (1.318) 1.841 (0.788) 2.065 (0.637) 2.327 (1.157)
VisPub 0.785 (0.439) 1.356 (1.348) 0.792 (0.448) 0.734 (0.252) 1.882 (1.836)
Twitter 1.591 (0.975) 1.488 (0.799) 1.731 (0.973) 0.439 (0.766) 2.958 (1.678)
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Fig. 7: Comparison of computing times for VisPub dataset. The results were ob-
tained from the average values over 20 runs. The values in parentheses indicate
average standard deviation of each algorithm. They represent the average of stan-
dard deviation of the corresponding values per stage.
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Table 4: Total document coverage of VisPub based on five different methods, as
defined in Eq. (27). The reported results are averaged values over 20 runs. The best
performance values are shown in bold, and the second best ones are underlined.
The standard deviation values (in hundredths) are shown in parentheses. They
represent the average of standard deviation of the corresponding values per stage.

k = 10 (ks = 2, q = 5)
c2 in Std Sprs Orth

LDA
L-Ens

Eq. (27) NMF NMF NMF NMF

3 0.937 (0.31) 0.923 (1.0) 0.940 (0.6) 0.970 (0.0) 0.941 (1.0)
4 0.778 (0.8) 0.746 (2.4) 0.790 (2.3) 0.884 (0.0) 0.821 (2.9)
5 0.496 (1.7) 0.473 (3.9) 0.519 (3.4) 0.666 (0.0) 0.601 (4.5)
6 0.236 (1.3) 0.229 (3.9) 0.256 (3.3) 0.352 (0.0) 0.350 (4.4)
7 0.081 (0.9) 0.083 (2.7) 0.091 (1.6) 0.141 (0.0) 0.153 (2.9)
8 0.021 (0.2) 0.021 (1.0) 0.024 (0.6) 0.037 (0.0) 0.047 (1.4)
9 0.004 (0.0) 0.004 (0.3) 0.005 (0.2) 0.005 (0.0) 0.009 (0.4)
10 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.001 (0.1)

Avg. 0.319 (0.6) 0.301 (1.7) 0.328 (1.4) 0.382 (0.0) 0.365 (2.0)

k = 50 (ks = 2, q = 25)
Std Sprs Orth

LDA
L-Ens

NMF NMF NMF NMF
3 0.962 (0.3) 0.951 (0.9) 0.963 (0.4) 0.977 (0.0) 0.972 (0.3)
4 0.770 (1.0) 0.717 (3.6) 0.772 (1.9) 0.902 (0.0) 0.892 (1.7)
5 0.428 (1.4) 0.367 (4.2) 0.435 (2.4) 0.651 (0.0) 0.689 (3.8)
6 0.155 (0.9) 0.125 (2.4) 0.158 (1.6) 0.336 (0.0) 0.412 (3.7)
7 0.039 (0.3) 0.030 (0.9) 0.040 (0.5) 0.107 (0.0) 0.178 (2.3)
8 0.007 (0.1) 0.006 (0.3) 0.007 (0.2) 0.028 (0.0) 0.057 (1.1)
9 0.001 (0.0) 0.001 (0.0) 0.001 (0.0) 0.001 (0.0) 0.012 (0.3)
10 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.003 (0.1)

Avg. 0.295 (0.4) 0.275 (1.5) 0.297 (0.8) 0.375 (0.2) 0.402 (1.6)

k = 100 (ks = 2, q = 50)
Std Sprs Orth

LDA
L-Ens

NMF NMF NMF NMF
3 0.962 (0.5) 0.948 (0.4) 0.962 (0.4) 0.979 (0.0) 0.980 (0.3)
4 0.724 (1.4) 0.676 (1.7) 0.722 (1.3) 0.919 (0.0) 0.889 (2.1)
5 0.346 (1.7) 0.303 (1.4) 0.345 (1.6) 0.676 (0.0) 0.669 (4.6)
6 0.111 (0.9) 0.099 (0.6) 0.111 (0.8) 0.336 (0.0) 0.397 (4.3)
7 0.028 (0.3) 0.024 (0.3) 0.028 (0.3) 0.105 (0.0) 0.179 (2.3)
8 0.007 (0.1) 0.005 (0.1) 0.007 (0.1) 0.024 (0.0) 0.060 (1.1)
9 0.002 (0.1) 0.001 (0.0) 0.001 (0.1) 0.003 (0.0) 0.017 (0.4)
10 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.005 (0.1)

Avg. 0.273 (0.6) 0.257 (0.5) 0.272 (0.1) 0.380 (0.0) 0.400 (1.7)

other comparable methods showing equal or even better performances at times
may not perform consistently in all the datasets.

In addition, Fig. 6(a) shows how the topic coherence value changes as the
stage proceeds in our ensemble model. Here, one can see that the topic coherence
is constantly improved as the stages proceed, which ends up generating those
topics with much better quality than any other methods. This strongly supports
our claim that the gradient boosting-based ensemble framework for NMF works
surprisingly well in topic modeling applications and that the topics generated in
later stages in this framework will have significant advantages than those generated
by other existing methods.
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(a) Standard NMF (b) Sparse NMF (c) Orthogonal NMF

(d) LDA (e) L-Ens NMF

Fig. 8: Topic examples from Twitter dataset

Total Document Coverage. Table 4 shows the total document coverage re-
sults of different methods. In this table, our method is shown to be the best or the
second best method for all the different number of topics.

Another important observation is that the performance margin between our
method and the others becomes larger in favor of ours when c2 in Eq. (27) increases.
Note that a large c2 imposes a strict condition for a particular document to be
explained by a topic (Section 4.1.3). The fact that our method works well compared
to other methods in such a strict condition signifies its important advantage of
revealing the faithful semantic information from the resulting topics.

Computing Times. We measured the running time of different methods by
varying the total number of topics, k, from 2 to 50. In the case of our ensemble NMF
method, we fixed ks as 2 while changing q from 1 to 25. As shown in Fig. 7, our
method runs fastest, and more importantly, it scales better than any other methods
with respect to k. As discussed in Section 3.2.5, such a computational advantage is
due to two synergetic aspects: (1) maintaining ks to be small regardless of how large
k is and (2) using a highly efficient NMF algorithm that performs an exhaustive
search on all the possible active/passive set partitionings. Such promising aspects
of our proposed L-EnsNMF imply that it can be used to efficiently compute a
large number of topics from large-scale data.

4.3 Exploratory Topic Discovery

In this section, we present diverse interesting topics uniquely found by our methods
from several datasets. Fig. 8 shows the five representative topics extracted from
Twitter dataset by the baseline methods and our method. The keywords found
by other methods are not informative in a sense that they are either too general
or common words with no interesting implication–see words, such as ‘lol,’ ‘wow,’
‘great,’ ‘hahah.’ On the contrary, our localized ensemble NMF generates interesting
keywords for its topics, e.g., ‘hurricane,’ ‘sandi,’ ‘fittest,’ ‘survive,’ ‘ireland,’ which
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(a) Standard NMF

(b) L-EnsNMF

Fig. 9: Discovered topics using VisPub dataset

deliver more specific and insightful information to users. For example, it discovered
‘hurricane sandi’–which devastated New York City in 2012–while both words were
not found in any of the 100 topics (10 keywords each) generated by other baseline
methods. This demonstrates that our method could be used in, say, early disaster
detection and many other areas that can greatly benefit from local topic discovery.
Besides, a quick search for related web documents with the query ‘ireland hurricane
sandy’ led to the discovery of the local news that the Ireland football team visited
New York in June 2013 to boost a community hit by Hurricane Sandy. This was
another example indicative of how local topics can be more useful than global
topics.

The second set of examples for assessing the semantic topic quality are ex-
tracted from VisPub dataset, as shown in Fig. 9. The results from standard NMF
(Fig. 9(a)) are mostly dominated by those keywords too obvious and thus unin-
formative, e.g., ‘visual,’ ‘user,’ ‘interface,’ ‘tool,’ ‘interact,’ considering that the
documents are mainly about interactive visualization and user interfaces. On the
other hand, our method delivers more focused keywords revealing the useful infor-
mation about specific sub-areas in the field. For example, from the topic containing
‘search,’ ‘engine,’ ‘result,’ and ‘multimedia,’ which are about search engine visu-
alization, we found the paper “Visualizing the results of multimedia web search
engines” by Mukherjea et al. [42]. The keywords, ‘network’ and ‘evolut,’ which
are about dynamic, time-evolving network visualization, led us to related papers,
e.g., “Visual unrolling of network evolution and the analysis of dynamic discourse”
by Brandes et al. [8]. Finally, the keywords, ‘gene’ and ‘express,’ which are about
biological data visualization, point directly to the paper “MulteeSum: a tool for
comparative spatial and temporal gene expression data” by Meyer et al. [41].

4.4 Interactive Topic Discovery with iL-EnsNMF

In this section, we present the results of user-driven topic discovery. L-EnsNMF
has strength in providing local topics that enable a more thorough, insightful
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(a) Keyword-wise (stage 1-2) (b) Keyword-wise (stage 11-
13)

(c) Document-wise (stage 1-
2)

(d) Document-wise (stage
11˜13)

Fig. 10: Discovered topics from Reuters dataset using keyword ‘korea’

(a) Keyword-wise (stage 1-2) (b) Keyword-wise (stage 13-
15)

(c) Document-wise (stage 1-
2)

(d) Document-wise (stage
13-15)

Fig. 11: Discovered topics from Reuters dataset using keyword ‘japan’

summary of the dataset than other topic modeling methods. The interactive topic
modeling approach using iL-EnsNMF does not only inherit such traits from its
original model but also allows users to find those topics of user’s interest, rather
than randomly chosen ones in a fully-automated manner.
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Fig. 12: Relative residual values vs. stages in iL-EnsNMF

4.4.1 Keyword-Wise and Document-Wise Topic Steering

In this section, we present user-driven topic discovery examples using both keyword-
and document-wise iL-EnsNMF. For the former, we conducted two experiments
using the keyword ‘korea’ and ‘japan’ as the user-specified keyword, respectively.
For the latter, we selected the documents with the highest frequency of ‘korea’ and
‘japan,’ respectively, and assumed that these documents are those a user selected
as interesting documents.

Fig. 10 shows a group of topic keywords extracted from the early and later
stages using the above-described user selection of keywords and documents. Rep-
resentative topic keywords include ‘dollar,’ ‘south,’ ‘japan,’ and ‘u.s’ when using
keyword-wise weighting with ‘korea’ as a user-selected keyword, while topic key-
words such as ‘trade’ and ‘u.s’ emerged as topic keywords when using document-
wise weighting with the document most relevant to ‘korea.’ Both keyword- and
document-wise weighting in the early stages showed that the prevailing issues in
Korea in 1987 were mostly related to international economics. Those topics emerg-
ing from later stages, although looking less relevant at a glance, were often more
focused and insightful. One interesting topic keyword that appeared at stage 11
using document-wise weighting was ‘samsung’ (Fig. 10(d)). Samsung, a currently
Korean multinational conglomerate, was not yet a multinational company back
then.

Similar experiments were done using the user-selected keyword ‘japan.’ Fig. 11
shows a group of keywords from the early and later stages. In the case of keyword-
wise weighting, keywords such as ‘u.s,’ ‘trade,’ and ‘sanctions’ appeared. On the
other hand, when using document-wise weighting with the document most rele-
vant to ‘japan,’ topic keywords such as ‘trade,’ ‘selling,’ ‘tanker,’ and ‘sanctions’
emerged. As in the previous example using the keyword ‘korea,’ keywords that
appeared in the early stages were also related to international economics. One in-
teresting example in this case was found using the topic keywords, ‘sanction’ and
‘semiconductor.’ The semiconductor trade conflicts between the U.S. and Japan
was one of the main issues in international economics in 1987. At later stages,
similar to the previous example using keyword ‘korea,’ topic keywords from both
keyword-wise and document-wise weighting became more focused and local, but
they conveyed more meanings useful to users. At stage 14 of the keyword-wise
weighting, the word ‘nakasone’ appeared (Fig. 11(b)). Yasuhiro Nakasone was
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(a) Topics extracted by iL-EnsNMF using
a selected keyword ‘germany’

(b) Deflate-then-Focus method with topics
about ‘u.s’ and ‘trade’ removed and then
those about ‘germany’ emphasized

Fig. 13: Deflate-then-Focus approach

the Prime Minister of Japan in 1987. At stage 13 of document-wise weighting,
the word ‘yeutter’ appeared (Fig. 11(d)). Clayton Keith Yeutter was the United
States Trade Representative in 1987.

Fig. 12 shows the relative residual measures, as defined in Eqs. (24) and (25),
over stages for the above-described examples. Fig. 12(a) shows the change of rela-
tive residuals in keyword-wise weighting and Fig. 12(b) in document-wise weight-
ing. The figure indicates that our relative residual keeps decreasing monotonically
over stages.

4.4.2 Deflate-then-Focus Scenario

Suppose the user wants to extract topics using user-specified keywords but noisy
keywords are often extracted because other dominant topic components prevailing
in the dataset may be combined with minor topics relevant to user-specified key-
words. The Deflate-then-Focus method addresses this issue by deflating the topics
about the unwanted dominant keywords in advance. First, we iterate iL-EnsNMF
by selecting unwanted topic keywords as the input. As the stages proceed, the
dominance of the selected keyword in the dataset progressively diminishes be-
cause the interactive weighting enables the parts related to selected keywords in
the residual matrix to decrease more rapidly. When a stopping criteria defined is
met (Eqs. (24) and (25)), the subsequent stages begin to run using the keywords
of user’s interest to extract the relevant topics.

An example of this approach is illustrated in Fig. 13. In our experiment we
set the stopping threshold as θ = 0.5. In detail, Fig. 13(a) shows topic keywords
using iL-EnsNMF with keyword-wise weighting where ‘germany’ was used as the
user-specified keyword throughout the iteration. It can be seen that the topics
about this keyword also involve other general keywords such as ‘u.s’ and ‘trade.’
On the other hand, Fig. 13(b) shows the topic keywords using iL-EnsNMF with
keyword-wise weighting where we selected ‘u.s’ and ‘trade’ first as unwanted user-
specified keywords and ‘germany’ as the topic keyword of user’s interest. Compared
to Fig. 13(a), Fig 13(b) no longer shows unwanted keywords such as ‘u.s,’ ‘billion,’
or ‘stock.’ Instead, keywords that are more closely related to ‘germany’, such as
‘linotype’ and ‘stolenberg,’ appeared. Linotype is a German company acquired
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in German Commerzbank, and Gerhard Stolenberg was the Federal Minster of
Finance of Germany in 1987, respectively.

5 Conclusion

In this paper, we presented a novel ensemble approach of NMF called L-EnsNMF
for high-quality local topic discovery via a gradient boosting framework and a
systematic local weighting technique. L-EnsNMF is especially useful in disclos-
ing local topics that are otherwise left undiscovered when using existing topic
modeling algorithms. Although the algorithm is designed to find localized topics,
L-EnsNMF achieves outstanding performances in both topic coherence and doc-
ument coverage compared to other approaches that mostly reveal general topics.
This indicates that our approach does not only excel in providing meaningful top-
ics but also represents and summarizes the overall information of a corpus better
than other state-of-the art methods. Moreover, it performs much faster than other
methods owing to the exhaustive search approach for an optimal active/passive
set partitioning, which makes our method promising for large-scale and real-time
topic modeling applications.

We also added an interaction capability to L-EnsNMF, which we call iL-
EnsNMF. This method allows users to specify the interesting keywords or docu-
ments to extract their relevant topics. We demonstrated interactive topic discovery
scenarios using real-world datasets, and the topics obtained through iL-EnsNMF
conveys a more meaningful summary of the user-driven topics by covering both
the major and local topics lying inside the dataset.

Our work is capable of summarizing the data with more contents by including
both major and local topics. However, we believe that our work has certain ways
to reach its full potential. In some cases, our NMF operation is vulnerable to
extracting redundant topics as the stages of our computation proceeds. In iL-
EnsNMF, some seemingly-irrelevant keywords or noisy data are included when
extracting topics. As our future work, we plan to improve our model algorithm by
tackling the constraints imposed on our model and by developing a method that
can automatically detect and filter out noisy data while extracting local topics.

In addition, we also plan to expand our work to a visual topic modeling sys-
tem [29] by capitalizing on the idea of our novel topic modeling approach and
further expanding the interaction capabilities of our algorithm to flexibly support
an extensive user-driven topic discovery.
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