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Abstract—Nonnegative matrix factorization (NMF) has been
widely applied in many domains. In document analysis, it has
been increasingly used in topic modeling applications, where a
set of underlying topics are revealed by a low-rank factor matrix
from NMF. However, it is often the case that the resulting topics
give only general topic information in the data, which tends not
to convey much information. To tackle this problem, we propose
a novel ensemble model of nonnegative matrix factorization
for discovering high-quality local topics. Our method leverages
the idea of an ensemble model, which has been successful
in supervised learning, into an unsupervised topic modeling
context. That is, our model successively performs NMF given
a residual matrix obtained from previous stages and generates
a sequence of topic sets. Our algorithm for updating the input
matrix has novelty in two aspects. The first lies in utilizing the
residual matrix inspired by a state-of-the-art gradient boosting
model, and the second stems from applying a sophisticated
local weighting scheme on the given matrix to enhance the
locality of topics, which in turn delivers high-quality, focused
topics of interest to users. We evaluate our proposed method by
comparing it against other topic modeling methods, such as a
few variants of NMF and latent Dirichlet allocation, in terms
of various evaluation measures representing topic coherence,
diversity, coverage, computing time, and so on. We also present
qualitative evaluation on the topics discovered by our method
using several real-world data sets.

Index Terms—Topic modeling; ensemble learning; matrix fac-
torization; gradient boosting; local weighting.

I. INTRODUCTION

Topic modeling has been an active area of research owing
to its capability to provide a set of topics in terms of their
representative keywords, which serve as a summary about
large-scale document data [3]. Roughly speaking, two different
topic modeling approaches exist: 1) probabilistic models such
as probabilistic latent semantic indexing (pLSI) [15] and latent
Dirichlet allocation (LDA) [3], and 2) matrix factorization
methods such as nonnegative matrix factorization (NMF) [26].

In both types of methods, the main focus is to find a given
number of bases or probability distributions, which we call
topics, over the dictionary so that they can explain individual
documents as much as possible. Because of this nature, the
identified topics tend to be general ones prevalent among the
entire set of documents. However, such dominant topics may
not give us much meaningful information, and/or sometimes
they become highly redundant with each other. This problem
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often arises in real-world document data when most of them
share some common characteristics in their contents and/or
the documents contain a large amount of noise, e.g., Twitter
data.

For instance, Fig. 1 shows the sampled topics from those
research papers in data mining domains1 containing keywords
‘dimension’ or ‘reduction.’ Fig. 1(a), where standard NMF
returns ‘dimension’ or ‘reduction’ as dominant keywords in
most of the topics, renders the corresponding topics redundant,
thus less informative.

To tackle this problem, we propose a novel topic modeling
approach by building an ensemble model of NMF, which can
reveal not only dominant topics but also minor but meaning-
ful, important topics to users. Based on a gradient boosting
framework, which is one of the most effective ensemble
approaches, our method performs multiple stages of NMF on
a residual matrix that represents the unexplained part of data
from previous stages. Furthermore, we propose a novel local
weighting technique combined with our ensemble method to
discover diverse localized topics. As a result, unlike the highly-
redundant topics of standard NMF (Fig. 1(a)), our proposed
method shows much more meaningful, diverse topics, thereby
allowing users to obtain deep insight, as seen in Fig. 1(b).

Overall, the main contributions of this paper are summarized
as follows:
1. We develop an ensemble approach of nonnegative matrix
factorization based on a gradient-boosting framework. We
show that this novel approach can extract high-quality local
topics from noisy documents dominated by a few uninteresting
topics.
2. We perform an extensive quantitative analysis using various
document datasets and demonstrate the superiority of our
proposed method.
3. We show high-quality localized topic examples from several
real-world datasets including research paper collections and
information-scarce Twitter data.

The rest of this paper is organized as follows. Section II
discusses related work. Section III describes our ensemble
NMF approach, which can reveal diverse localized topics from
text data. Section IV shows quantitative comparison results and

1https://github.com/sanghosuh/four area data-matlab/



(a) Standard NMF

(b) Our approach

Fig. 1: Topic examples extracted from research papers in the data mining area published in 2000 - 2008

qualitative topic examples using various real-world datasets.
Finally, Section V concludes the paper with future work.

II. RELATED WORK

Since NMF was originally proposed by Paatero and Tapper
[33] as the name of positive matrix factorization, a myriad of
research about NMF has been conducted. Among them, Lee
and Seung proposed the current popular form of NMF [26].
To improve the performance and the convergence properties of
NMF, many studies presented an efficient alternating nonnega-
tive least squares (ANLS)-based framework [18], [30] and its
hierarchical version (HALS) [6]. In addition, Kim and Park
proposed the active-set-like fast algorithms [21]. On the other
hand, NMF has been applied in various manner, e.g., handling
user inputs [5] and multiple data sets [16].

Related to our approach, Biggs et al. [2] proposed a suc-
cessive rank-one matrix approximation based on the fact that
the rank-one factorization of a nonnegative matrix has the
same solution as singular value decomposition. However, their
method requires to determine an optimal submatrix for such
rank-one approximation, which is computationally expensive.
More recently, Gillis and Glineur [11] proposed another recur-
sive approach called nonnegative matrix underapproximation
based on the additional constraints that the approximated
values should be strictly smaller than the corresponding values
in a given matrix, and due to this constraint, the algorithm
becomes more complicated and computationally intensive
compared to standard NMF. On the other hand, NMF has
been used in the ensemble framework in many other machine
learning applications, including clustering [13], classification
[37], and bioinformatics [38].

In general, most of these existing ensemble methods primar-
ily focus on aggregating the outputs from multiple individual
models constructed independently with some variations on
either an input matrix or other parameter settings. Thus, these
are not applicable in topic modeling where we focus on the
learned bases themselves. Furthermore, none of them has
tackled the idea of constructing an ensemble of NMF models
based on a gradient boosting framework, which grants a clear
novelty of our work.

Without nonnegativity constraint, an ensemble of general
matrix factorization has also been an active research topic
in the context of collaborative filtering [35]. Ensembles of
maximum margin matrix factorizations (MMMF) improved
the result of a single MMMF model [7]. Ensembles of the
Nystrom method [25] and of the divide-and-conquer matrix
factorization [31] have also been shown effective. The Netflix
Prize runner-up [34] proposed a feature-weighted least squares
method using a linear ensemble of learners with human-crafted
dynamic weights. Lee et al. [29] proposed a stage-wise feature
induction approach, automatically inducing local features in-
stead of human-crafted features. Local low-rank matrix factor-
ization (LLORMA) [27], [28] combined the SVD-based matrix
factorization results from locally weighted matrices under the
assumption that the given matrix is only locally low-rank.
It shares with our proposed method some common aspects:
learning and combining locally-weighted models based on
random anchor point. However, the main difference is that
we impose nonnegativity in each individual model, which is
more appropriate in some applications such as topic modeling.
More importantly, in each stage, we systematically focus on
the unexplained part of the matrix with previous ensembles,
in contrast to a random choice with LLORMA.

III. L-ENSNMF

In this section, we first review standard NMF and its
applications to topic modeling. Afterwards, we formulate
our method called L-EnsNMF, the gradient-boosted ensemble
NMF for local topic discovery,2 as illustrated in Fig. 2.

A. Preliminaries: NMF for Topic Modeling

Given a nonnegative matrix X ∈ Rm×n
+ , and an integer

k � min (m, n), nonnegative matrix factorization (NMF) [26]
finds a lower-rank approximation given by

X ≈WH, (1)

2The code is available at https://github.com/sanghosuh/lens nmf-matlab



Fig. 2: Overview of the proposed ensemble approach

Notation Description
m Number of keywords
n Number of documents
ks Number of topics per stage
p Number of stages in L-ensNMF

k (= ksp) Number of total topics
A ∈ Rm×n

+ Input term-by-document matrix
Ŵ (i) ∈ Rm×k

+ Term-by-topic matrix obtained at stage i

Ĥ(i) ∈ Rk×n
+ Topic-by-document matrix at stage i

R(i) ∈ Rm×n
+ Residual matrix at stage i

R
(i)
L ∈ Rm×n

+ Localized residual matrix at stage i

D
(i)
r ∈ Rm×m

+ Row-wise scaling matrix at stage i

D
(i)
c ∈ Rn×n

+ Column-wise scaling matrix at stage i

TABLE I: Notations used in the paper

where W ∈ Rm×k
+ and H ∈ Rk×n

+ are nonnegative factors.
NMF is typically formulated in terms of the Frobenius norm
as

min
W,H≥0

‖X −WH‖2F . (2)

where ‘≥’ applies to every element of the given matrix in the
left-hand side. In the topic modeling context, xi ∈ Rm×1

+ ,
the i-th column of X , corresponds to the bag-of-words
representation of document i with respect to m keywords,
possibly with some pre-processing, e.g., inverse-document
frequency weighting and column-wise `2-norm normalization.
k corresponds to the number of topics. wl ∈ Rm×1

+ , the l-th
nonnegative column vector of W , represents the l-th topic as a
weighted combination of m keywords. A large value indicates
a close relationship of the topic to the corresponding keyword.
The i-th column vector of H , hi ∈ Rk×1

+ , represents document
i as a weighted combination of k topics. Table I summarizes
the notations used throughout this paper.

B. Ensemble NMF Approach for Localized Topic Modeling

We propose an ensemble model for topic modeling where an
individual learner corresponds to NMF. Given a nonnegative
matrix X ∈ Rm×n

+ , we learn an additive model X̂(q) with q
products W (i)H(i):

X ≈ X̂(q) =

q∑
i=1

W (i)H(i) (3)

where W (i) ∈ Rm×ks
+ , H(i) ∈ Rks×n

+ and q is the number
of individual learners. That is, the i-th stage represents a
local NMF model discovering the i-th ks local topics. To
achieve this approximation, we introduce an objective function
in terms of the Frobenius norm as follows:

min
W (i),H(i)≥0, i=1,··· ,q

∥∥∥∥∥X −
q∑

i=1

W (i)H(i)

∥∥∥∥∥
2

F

. (4)

Our proposed method solves this problem in a forward stage-
wise manner [14], inspired by well-known ensemble learning
methods in a supervised learning context such as AdaBoost
[9] and gradient boosting [10]. We iteratively add a new local
model to better approximate X , fitting the i-th local NMF,
W (i)H(i), with rank ks to the localized residual, which is the
unexplained portion by previously learned i− 1 local models.
To this end, let us first define the (non-localized) nonnegative
residual matrix at stage i as

R(i) =

{
X if i = 1[

R(i−1) −W (i−1)H(i−1)
]
+

if i ≥ 2
(5)

where [·]+ is an operator that converts every negative element
in the matrix to zero. Next, we apply local weighting on this
residual matrix R(i) to obtain its localized version R

(i)
L and



compute W (i) and H(i) by applying NMF to R
(i)
L as an input

matrix. More details about our local weighting scheme will be
described in Section III-E.

In general, the input matrix to NMF at stage i is defined as

R(i) =

[[[
X −W (1)H(1)

]
+
−W (2)H(2)

]
+

· · ·

−W (i−1)H(i−1)
]
+
, (6)

where Ŵ (i) and Ĥ(i) are obtained in a forward stage-wise
manner, e.g.,

(
Ŵ (1), Ĥ(1)

)
,
(
Ŵ (2), Ĥ(2)

)
, and so on. By a

simple manipulation, one can prove that our original objective
function shown in Eq. (4) is equivalent to a single-stage NMF
as

min
W (i),H(i)≥0, i=1,...,q

∥∥∥∥∥X −
q∑

i=1

W (i)H(i)

∥∥∥∥∥
2

F

(7)

= min
W (i),H(i)≥0, i=1,...,q

‖X −WH‖2F (8)

where W =
[
W (1) W (2) · · · W (q)

]
∈ Rm×(ksq)

+ and

H =


H(1)

H(2)

...
H(q)

 ∈ R(ksq)×n
+ .

However, the main difference between our method and the
(single-stage) standard NMF lies in the approach adopted to
solve W (or W (i)’s) and H (or H(i)’s). That is, in standard
NMF, all of W (i)’s and H(i)’s are optimized simultaneously
within a single optimization framework using various algo-
rithms such as a gradient descent [30], a coordinate [26],
or a block-coordinate descent framework [19]. However, our
proposed method solves each set of (W (i), H(i))’s in a greedy,
sequential manner, which means that once the solution for
(W (i), H(i)) is obtained at stage i, it is fixed during the
remaining iterations.

Our approach can be viewed as a functional gradient boost-
ing approach [14]. In detail, let f (i) and L be

f (i) = f
(
W (1), · · · ,W (i), H(1), · · · , H(i)

)
=

i∑
l=1

W (l)H(l),

L
(
X, f (i)

)
=
∥∥∥X − f (i)

∥∥∥2
F
=

∥∥∥∥∥X −
i∑

l=1

W (l)H(l)

∥∥∥∥∥
2

F

, (9)

respectively. In the case where f (i) = f (i−1), which corre-
sponds to the results from the previous stage i−1, the gradient
of Eq. (9), gi, can be expressed as

gi =

[
∂L
(
X, f (i)

)
∂f (i)

]
f(i)=f(i−1)

= 2
(
X − f (i−1)

)
= 2

(
X −

i−1∑
l=1

W (l)H(l)

)
.
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(a) Standard NMF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 W(:,1)
W(:,2)

(b) Deflation-based NMF

Fig. 3: Synthetic data example where m = 2, ks = 1, and
q = 2

Now, imposing the constraints f (i) ≥ 0 due to W (i), H(i) ≥ 0
and ignoring the constant in the above equation, we can obtain
the projected gradient P [gi] as Eq. (6) by setting i = 1, · · · , q.

C. Why NMF on Residual Matrices

Traditionally, a greedy approach such as the one we pro-
posed in Section III-B can be viewed as a rank-deflation
procedure for low-rank matrix factorization, which obtains
low-rank factors one at a time [36]. The power method [12],
which consecutively reveals the most dominant eigenvalue
and vector pairs, is a representative deflation method. It is
known that the solution obtained by such a (greedy) deflation
procedure is equivalent to the solution obtained by simulta-
neously optimizing all the low-rank factors in singular value
decomposition [12], where the low-rank factor matrices are
allowed to be both positive and negative.

Generally, such a deflation method does not work for NMF,
due to the limitation that the factor matrices should not contain
negative elements. Fig. 3 shows the comparison between
standard NMF and our ensemble approach, given a synthetic
Gaussian mixture data in a two-dimensional feature space.
As seen in Fig. 3(a), the column vectors of W generated
from standard NMF in Eq. (2) successfully reveal the two
components of the Gaussian mixture data. However, in the
deflation approach shown in Fig. 3(b), the basis vector at the
first stage, W (1) ∈ R2×1

+ , is computed as a global centroid and
then at the second stage, W (2) ∈ R2×1

+ , which is computed on
the residual matrix, is shown as the vector along a single axis,
y-axis in this case. As a result, the two bases found by the
deflation-based NMF approach fail to identify the true bases.
This is clearly the case where the deflation approach does not
work with NMF.

In the case of text data, however, where the dimension is
high and the matrix is highly sparse, we claim that such a
deflation method can work as well as or even better than
standard NMF. Fig. 4 shows another synthetic data example
where the data are relatively high-dimensional compared to
those in the previous example, e.g., m = 5, and the column
vectors of the true W are sparse. We generated synthetic
data using a Gaussian mixture with the mean values of its
components equal to the columns of W shown in Fig. 4(a).
In this figure, standard NMF (Fig. 4(b)) does not properly
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Fig. 4: Column vectors of W from synthetic data with m = 5,
ks = 1, and q = 4. The columns of W ’s generated by both the
standard and the ensemble NMF have been aligned to those
of the ground truth W using the Hungarian method [24].

recover the true column vectors of W except for the third
component. On the other hand, our deflation-based NMF
approach (Fig. 4(c)) recovers most of the true column vectors
of W much better than the standard NMF.

The reason why the deflation-based NMF works surpris-
ingly well with sparse high-dimensional data, e.g., text data, is
because their original dimensions, e.g., keywords in text data,
with large values are unlikely to overlap among different col-
umn vectors of W due to its sparsity. In this case, the deflation-
based NMF can be suitable by finding these dimensions or
keywords with large values in one vector at a time. Combined
with our local weighting technique described in Section III-E,
such a deflation-based method helps to reveal highly non-
redundant, diverse topics from the data by preventing the
significant keyword shown in a particular topic from appearing
in the other topics.

D. Efficient Algorithm for Ensemble NMF

A unique advantage of our method is that regardless of
the total number of topics, k, one can keep the rank used in
computing NMF at each stage, ks, small while increasing the
number of stages, q, i.e., ks � (k = ksq). Hence, to efficiently
solve NMF with a low value of ks, we extend a recent
active-set-based NMF algorithm [23], which demonstrated
significantly high efficiency for a small value of ks.

In detail, our algorithm is built upon the two-block coor-
dinate descent framework, which iteratively solves W while
fixing H and then the other way around. Given a local residual
matrix R

(i)
L at stage i, we first obtain the term-by-topic matrix

Ŵ (i) and the topic-by-document matrix Ĥ(i) by solving(
W (i), H(i)

)
= argmin

W,H≥0

∥∥∥R(i)
L −WH

∥∥∥2
F
. (10)

Each sub-problem of solving W (i) and H(i) in the above
equation can be represented as

min
G≥0
‖Y −BG‖2F =

∑
i

min
gi≥0
‖yi −Bgi‖

2
2 (11)

where H is obtained by setting B = W , G = H , and Y = X ,
W is obtained by setting B = H , G = W , and Y = XT ,
and gi and yi are the i-th columns of G and Y , respectively.
Let us consider each problem in the summation operator and
rewrite it as

min
g≥0
‖y−Bg‖22 , (12)

which is a nonnegativity-constrained least squares problem.
Here, the elements of the vector g can be partitioned into the
one containing zeros and the other containing strictly positive
values, and let us call these sets of dimension indices of the
active and the passive sets as Ia and Ip, respectively. Once we
fully know Ia and Ip for the optimal solution of Eq. (12), such
an optimal solution is equivalent to the solution obtained by
solving an unconstrained least squares using only the passive
set of variables [20], i.e.,

min ‖B (:, Ip) gi (Ip)− y‖22 . (13)

The active-set method iteratively modifies the partitioning
between Ia and Ip and solves for Eq. (13) until the optimal
Ia and Ip are found. However, this process is performed
one at a time for a particular partitioning until convergence,
which requires a large number of iterations. The approach
proposed in [23] accelerates this process for small ks values by
exhaustively solving based on all the possible partitionings and
selecting the optimal one since the number of all the different
partitionings, which is 2ks , would remain small.

However, this approach is not applicable when ks is large
since the number of partitionings grows exponentially with
respect to ks, and thus the original approach [23] proposed to
build a hierarchical tree until the method obtains the number of
leaf nodes as the total number of clusters or topics. However,
in this paper, we adopt this exhaustive search approach for an
optimal active/passive set partitioning as our individual learner
at each stage, which maintains the small value of ks when
solving NMF at each stage. As will be shown in Section IV,
our method does not only generate high-quality local topics
but also provides high computational efficiency compared to
standard NMF for obtaining the same number of topics.

E. Local Weighting

In contrast to standard NMF, which discovers mostly general
but uninteresting topics, our ensemble approach tends to
identify major but uninteresting topics at an early stage and
gradually reveal interesting local topics in subsequent stages,
since minor, unexplained topics will become more prominent
in the residual matrix as stages proceed. However, when the
number of topics per stage ks is small, we found that this
process sometimes takes many stages before revealing inter-
esting topics. To further accelerate this process and enhance
the diversity of local topics, we perform local weighting on the



residual matrix R(i) so that the explained parts are suppressed
while the unexplained parts are highlighted.

We form the localized residual matrix R
(i)
L as

R
(i)
L = D(i)

r R(i)D(i)
c , (14)

where diagonal matrices D
(i)
r ∈ Rm×m

+ and D
(i)
c ∈ Rn×n

+

perform row- and column-wise scaling, respectively. Solving
NMF given this scaled residual matrix is equivalent to solving
a weighted version of NMF with the corresponding row- and
column-wise scaling since

min
W (i),H(i)≥0

∥∥∥D(i)
r

(
R(i) −W (i)H(i)

)
D(i)

c

∥∥∥2
F

= min
W (i),H(i)≥0

∥∥∥D(i)
r R(i)D(i)

c −D(i)
r W (i)H(i)D(i)

c

∥∥∥2
F

= min
W

(i)
L ,H

(i)
L ≥0

∥∥∥R(i)
L −W

(i)
L H

(i)
L

∥∥∥2
F

by setting W
(i)
L = D

(i)
r W (i) and H

(i)
L = H(i)D

(i)
c .

We design these scaling factors to assign higher weights
to those rows or columns less explained (large residuals) by
previous stages. Let us define the probability distributions P (i)

r

and P
(i)
c over row indices, x’s, and over column indices, y’s,

respectively, as

P (i)
r (x) =

∑n
s=1 R

(i) (x, s)∑m
l=1

∑n
s=1 R

(i) (l, s)
for x = 1, · · · ,m (15)

P (i)
c (y) =

∑m
l=1 R

(i) (l, y)∑m
l=1

∑n
s=1 R

(i) (l, s)
for y = 1, · · · , n. (16)

In Eqs. (15) and (16), higher probability values are assigned
to those rows or columns with larger values in residual matrix
R(i). In other words, a higher probability indicates that the
corresponding row or column is less explained up to the
previous stage. Rather than directly using these probability
distributions as the local weighting matrices D

(i)
r or D

(i)
c ,

we sample from this probability distribution only a single
row ar and a column ac, which we call an anchor point,
corresponding to a particular keyword and a document that
were not yet well explained from previous stages, respectively.
The purpose of this selection process is to allow the NMF
computation with only a small ks to properly reveal the topics
around the selected document and keyword, rather than to
generate still unclear topics reflecting most of the unexplained
documents.

The diagonal entries of D
(i)
r and D

(i)
c are then computed

based on the similarity of each row and column to the anchor
row ar and column ac, respectively. Specifically, given the
selected ar and ac, we use the cosine similarity to compute
the l-th diagonal entry of D(i)

r (l, l) and the s-th diagonal entry
of D(i)

c (s, s), respectively, as

D(i)
r (l, l) = cos (X (ar, :) , X (l, :)) for l = 1, · · · ,m (17)

D(i)
c (s, s) = cos (X (:, ac) , X (:, s)) for s = 1, · · · , n. (18)

Using these weights, we enhance the locality of the resulting
topics.

Applying the localized residual matrix as described above,
we plug R

(i)
L (Eq. (14)) into Eq. (10) and obtain W (i) and

H(i). When computing the residual matrix in the next stage
using W (i) and H(i), as shown in Eq. (5), however, it may
end up removing only the fraction of the residuals, which can
be significantly smaller than the unweighted residuals since all
the weights are less than or equal to 1. To adjust this shrinking
effect caused by local weighting, we recompute H(i) using the
given W (i) and the non-weighted residual matrix R(i), i.e.,

H(i) = argmin
H≥0

∥∥∥W (i)H −R(i)
∥∥∥2
F
. (19)

In this manner, our approach still maintains the localized topics
W (i) from R

(i)
L while properly subtracting the full portions

explained by these topics from R(i) for the next stage.
Finally, the detailed algorithm of our approach is summa-

rized in Algorithm 1.

Algorithm 1: Localized Ensemble NMF (L-EnsNMF)

Input: Input matrix X ∈ Rm×n
+ , integers ks and q

Output: W (i) ∈ Rm×ks
+ and H(i) ∈ Rks×n

+ for
i = 1, · · · , q

for i = 1 to q do
Compute R(i) using Eq. (6).
Compute P

(i)
r (x) and P

(i)
c (y) using Eqs. (15)

and (16).
ar ← Sample a row from P

(i)
r (x).

ac ← Sample a column from P
(i)
c (y).

Compute D
(i)
r and D

(i)
c using Eqs. (17) and (18).

Compute R
(i)
L using Eq. (14).

Compute W (i) using Eq. (10).
Compute H(i) using Eq. (19).

end

IV. EXPERIMENTS

In this section, we present extensive quantitative compar-
isons of our proposed approach against other state-of-the-art
methods. Afterwards, we demonstrate qualitative results con-
taining high-quality localized topics identified by our methods,
which would be otherwise difficult to discover using other
existing methods, from several real-world datasets.

All the experiments were conducted using MATLAB 8.5
(R2015a) on a desktop computer with dual Intel Xeon E5-
2687W processors.

A. Experimental Setup

In the following, we describe our experimental setup includ-
ing datasets, baseline methods, and evaluation measures.



1) Datasets: We selected the following five real-world doc-
ument datasets: 1) Reuters-21578 (Reuters),3 a collection of
articles from the Reuters newswire in 1987; 2) 20 Newsgroups
(20News),4 from Usenet newsgroups; 3) Enron5 containing
2,000 randomly sampled emails generated by the employees of
Enron Corporation; 4) IEEE-Vis (VisPub),6 academic papers
published in IEEE Visualization conferences (SciVis, InfoVis,
and VAST) from 1990 to 2014; and 5) Twitter, a collection
of 2,000 randomly selected tweets generated from a specific
location of New York City in June 2013. These datasets are
summarized in Table II.

Reuters 20News Enron VisPub Twitter
#docs 7,984 18,221 2,000 2,592 2,000

#words 12,411 36,568 19,589 7,535 4,212

TABLE II: Summary of the data sets used

2) Baseline Methods : We compared our method, L-
EnsNMF, against various state-of-the-art methods, including
standard NMF (StdNMF) [19],7 sparse NMF (SprsNMF)
[17],8 orthogonal NMF (OrthNMF) [8],9 and latent Dirichlet
allocation (LDA) [3].10

In most of these methods, we used default parameter values
provided by the software library, including the regularization
parameters for SprsNMF, OrthNMF, and LDA, as well as
the parameters used in convergence criteria. Since there exist
no clear convergence criteria for the Gibbs sampling-based
implementation of LDA, we set the number of iterations as
2,000, which is one of the most common settings. Also, note
that we did not use LLORMA as one of the baseline methods
because it is a supervised method and does not impose a
nonnegativity constraint, the two characteristics of which make
it unfit for topic modeling.

3) Evaluation Measures: We adopted several evaluation
measures for assessing the quality of the generated topics:
topic coherence [1] and the total document coverage. Addi-
tionally, we compared the computing times between different
methods. In the following, we will describe each measure in
detail.

Topic Coherence. To assess the quality of individual topics,
we utilize the point-wise mutual information (PMI) [32],
which indicates how likely a pair of keywords co-occur in
the same document. That is, given two words wi and wj , PMI
is defined as

PMI (wi, wj) = log
p (wi, wj)

p (wi) p (wj)
, (20)

where p (wi, wj) represents the probability of wi and wj co-
occurring in the same document and p (wi) represents the

3https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
4http://qwone.com/∼jason/20Newsgroups/
5https://www.cs.cmu.edu/∼./enron/
6http://www.vispubdata.org/site/vispubdata/
7https://github.com/kimjingu/nonnegfac-matlab
8http://www.cc.gatech.edu/∼hpark/software/nmf bpas.zip
9http://davian.korea.ac.kr/myfiles/list/Codes/orthonmf.zip
10http://psiexp.ss.uci.edu/research/programs data/toolbox.htm

TABLE III: Comparison of topic coherence values. The re-
ported results are averaged values over 20 runs. The best
performance values are shown in bold, and the second best
ones are underlined.

k = 12 (ks = 2, q = 6)
Std Sprs Orth LDA L-Ens

NMF NMF NMF NMF
Reuters 1.051 1.121 0.631 1.348 1.315
20News 1.435 1.537 0.920 1.685 2.108
Enron 1.918 1.980 1.885 1.778 2.490
VisPub 0.615 0.562 0.619 0.367 0.769
Twitter 1.426 1.649 1.431 0.487 2.761

k = 24 (ks = 2, q = 12)
Std Sprs Orth LDA L-Ens

NMF NMF NMF NMF
Reuters 1.213 1.408 0.874 1.399 1.640
20News 1.512 1.795 1.000 2.043 2.334
Enron 1.890 1.792 1.886 1.928 2.370
VisPub 0.645 0.358 0.645 0.548 0.940
Twitter 1.654 1.764 1.671 0.442 2.843

k = 48 (ks = 2, q = 24)
Std Sprs Orth LDA L-Ens

NMF NMF NMF NMF
Reuters 1.349 1.322 1.103 1.590 1.832
20News 1.637 1.864 1.086 2.180 2.375
Enron 1.839 1.881 1.841 2.065 2.327
VisPub 0.737 0.918 0.745 0.648 1.136
Twitter 1.591 1.488 1.731 0.439 2.958

probability of wi occurring in our document data set. Thus, a
pair of words with a high PMI score can be viewed as being
semantically related, thus conveying meaningful information.
To extend this notion at a topic level and compute the topic
coherence measure, we first select the ten most representative
keywords of each topic and then compute the average PMI
score among them. Next, we further compute the average of
this score over all the given topics.

Total Document Coverage. This measure computes how
many documents (out of the entire document set) can be
explained by a given set of topics. Here, a document is said to
be explained if there exists a topic such that at least a certain
number of keywords among its most representative keywords
are found in that document. That is, given a set of topics
T ∈ {t1, · · · , tk} and a set of documents D = {d1, · · · , dn},
the total document coverage is defined as

TDC (T , D) (21)

=
|d ∈ D : ∃ti ∈ T s.t. |w (d) ∩ wR (ti, c1)| ≥ c2|

|D|
,

where w (d) represents the set of words occurring in document
d and wR (ti, c1) represents the set of the c1 most represen-
tative keywords of topic ti. In other words, this measures the
relative number of documents containing at least c2 keywords
among the c1 most representative keywords of one topic or
more. In our experiment, we set c1 = 20 and observed how
this measure changes while varying c2.

In terms of the comparison between two topic sets with an
equal number of topics, if one set has a better value of this
measure than the other, then one can view it as having not
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Fig. 5: Topic coherence values over stages when 100 topics
(ks = 2, q = 50) are computed. Each value of our method rep-
resents the average topic coherence value of ks corresponding
topics per stage. The results of the other methods show the
average values per ks topics. The results were obtained by
computing the average values over 1,000 runs.
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Fig. 6: Comparison of computing times for VisPub dataset.
The results were obtained from the average values over 50
runs.

only the better quality of topics but also the better diversity
since it explains more number of documents using the same
number of topics.

B. Quantitative Analysis

Topic Coherence. Table III compares the quality of the
topics generated by different topic modeling methods using
the topic coherence measure. As seen in this table, our
localized ensemble NMF is shown to maintain the highest
topic coherence consistently in most of the cases. For Reuters
dataset, with k = 12, LDA performs the best while our
method trails behind closely with the second best coherence
scores. Except for this case, however, our method demonstrates
the highest performance consistently in all the datasets and

the different number of topics. Note also that there is no
clear second best performing method. This observation lends
further support for our localized ensemble NMF by indicating
that other comparable methods showing equal or even better
performances at times may not perform consistently in all the
datasets.

In addition, Fig. 5 shows how the topic coherence value
changes as the stage proceeds in our ensemble model. Here,
one can see that the topic coherence is constantly improved
as the stages proceed, which ends up generating those topics
with much better quality than any other methods. This strongly
supports our claim that the gradient boosting-based ensemble
framework for NMF works surprisingly well in topic modeling
applications and that the topics generated in later stages in
this framework will have significant advantages than those
generated by other existing methods.

Total Document Coverage. Table IV shows the total
document coverage results of different methods. In this table,
our method is shown to be the best or the second best method
for all the different number of topics.

Another important observation is that the performance mar-
gin between our method and the others becomes larger in
favor of ours when c2 in Eq. (21) increases. Note that a
large c2 imposes a strict condition for a particular document
to be explained by a topic (Section IV-A3). The fact that our
method works well compared to other methods in such a strict
condition signifies its important advantage of revealing the
faithful semantic information from the resulting topics.

Computing Times. We measured the running time of
different methods by varying the total number of topics, k,
from 2 to 50. In the case of our ensemble NMF method,
we fixed ks as 2 while changing q from 1 to 25. As shown
in Fig. 6, our method runs fastest, and more importantly, it
scales better than any other methods with respect to k. As
discussed in Section III-D, such a computational advantage
is due to two synergetic aspects: (1) maintaining ks to be
small regardless of how large k is and (2) using a highly
efficient NMF algorithm that performs an exhaustive search on
all the possible active/passive set partitionings. Such promising
aspects of our proposed L-ensNMF imply that it can be used to
efficiently compute a large number of topics from large-scale
data.

C. Exploratory Topic Discovery

In this section, we present diverse interesting topics
uniquely found by our methods from several datasets. Fig. 7
shows the five representative topics extracted from Twitter
dataset by the baseline methods and our method. The keywords
found by other methods are not informative in a sense that they
are either too general or common words with no interesting
implication–see words, such as ‘lol,’ ‘wow,’ ‘great,’ ‘hahah.’
On the contrary, our localized ensemble NMF generates inter-
esting keywords for its topics, e.g., ‘hurricane,’ ‘sandi,’ ‘fittest,’
‘survive,’ ‘ireland,’ which deliver more specific and insightful
information to users. For example, it discovered ‘hurricane
sandi’–which devastated New York City in 2012–while both



TABLE IV: Total document coverage of VisPub based on five different methods, as defined in Eq. (21). The reported results
are averaged values over 20 runs. The best performance values are shown in bold, and the second best ones are underlined.

c2 in Eq. (21) 3 4 5 6 7 8 9 10 Average

StdNMF 0.937 0.778 0.496 0.236 0.081 0.021 0.004 0.000 0.319
k = 10 SprsNMF 0.923 0.746 0.473 0.229 0.083 0.021 0.004 0.000 0.301

(ks=2, q=5) OrthNMF 0.940 0.790 0.519 0.256 0.091 0.024 0.005 0.000 0.328
LDA 0.970 0.884 0.666 0.352 0.141 0.037 0.005 0.000 0.382

L-EnsNMF 0.941 0.821 0.601 0.350 0.153 0.047 0.009 0.001 0.365
StdNMF 0.962 0.770 0.428 0.155 0.039 0.007 0.001 0.000 0.295

k = 50 SprsNMF 0.951 0.717 0.367 0.125 0.030 0.006 0.001 0.000 0.275
(ks=2, q=25) OrthNMF 0.963 0.772 0.435 0.158 0.040 0.007 0.001 0.000 0.297

LDA 0.977 0.902 0.651 0.336 0.107 0.028 0.001 0.000 0.375
L-EnsNMF 0.972 0.892 0.689 0.412 0.178 0.057 0.012 0.003 0.402

StdNMF 0.962 0.724 0.346 0.111 0.028 0.007 0.002 0.000 0.273
k = 100 SprsNMF 0.948 0.676 0.303 0.099 0.024 0.005 0.001 0.000 0.257

(ks=2, q=50) OrthNMF 0.962 0.722 0.345 0.111 0.028 0.007 0.001 0.000 0.272
LDA 0.979 0.919 0.676 0.336 0.105 0.024 0.003 0.000 0.380

L-EnsNMF 0.980 0.889 0.669 0.397 0.179 0.060 0.017 0.005 0.400

(a) Standard NMF (b) Sparse NMF (c) Orthogonal NMF (d) LDA (e) L-Ens NMF

Fig. 7: Topic examples from Twitter dataset

(a) Standard NMF (b) L-EnsNMF

Fig. 8: Discovered topics using VisPub dataset

words were not found in any of the 100 topics (10 keywords
each) generated by other baseline methods. This demonstrates
that our method could be used in, say, early disaster detection
and many other areas that can greatly benefit from local topic
discovery. Besides, a quick search for related web documents
with the query ‘ireland hurricane sandy’ led to the discovery of
the local news that the Ireland football team visited New York
in June 2013 to boost a community hit by Hurricane Sandy.
This was another example indicative of how local topics can
be more useful than global topics.

The second set of examples for assessing the semantic topic
quality are extracted from VisPub dataset, as shown in Fig. 8.
The results from standard NMF (Fig. 8(a)) are mostly domi-
nated by those keywords too obvious and thus uninformative,
e.g., ‘visual,’ ‘user,’ ‘interface,’ ‘tool,’ ‘interact,’ considering
that the documents are mainly about interactive visualization
and user interfaces. On the other hand, our method delivers
more focused keywords revealing the useful information about
specific sub-areas in the field. For example, from the topic

containing ‘search,’ ‘engine,’ ‘result,’ and ‘multimedia,’ which
are about search engine visualization, we found the paper
“Visualizing the results of multimedia web search engines”
by Mukherjea et al. The keywords, ‘network’ and ‘evolut,’
which are about dynamic, time-evolving network visualization,
led us to related papers, e.g., “Visual unrolling of network
evolution and the analysis of dynamic discourse” by Brandes
et al. Finally, the keywords, ‘gene’ and ‘express,’ which are
about biological data visualization, point directly to the paper
“MulteeSum: a tool for comparative spatial and temporal gene
expression data” by Meyer et al.

V. CONCLUSION

In this paper, we presented a novel ensemble approach of
NMF for high-quality local topic discovery via a gradient
boosting framework and a systematic local weighting tech-
nique. The proposed method is especially useful in disclosing
local topics that are otherwise left undiscovered when using
existing topic modeling algorithms. Although the algorithm
is designed to find localized topics, our ensemble approach



achieves outstanding performances in both topic coherence and
document coverage compared to other approaches that mostly
reveal general topics. This indicates that our approach does not
only excel in providing meaningful topics but also represents
or summarizes the overall information of a corpus better than
other state-of-the art methods. Moreover, it performs much
faster than other methods owing to the exhaustive search
approach for an optimal active/passive set partitioning, which
makes our method promising for large-scale and real-time
topic modeling applications.

As our future work, we plan to expand our work to an
interactive topic discovery system [4], [22] by flexibly steering
the local weighting process in a user-driven manner so that
the subsequent topics can properly reflect a user’s subjective
interest and task goals.
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